Vertical tangent

In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.

在这里插入图片描述

Vertical tangent on the function ƒ(x) at x = c.

1 Limit definition

A function ƒ has a vertical tangent at x = a if the difference quotient used to define the derivative has infinite limit:

{\displaystyle \lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}={+\infty }\quad {\text{or}}\quad \lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}={-\infty }.}{\displaystyle \lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}={+\infty }\quad {\text{or}}\quad \lim _{h\to 0}{\frac {f(a+h)-f(a)}{h}}={-\infty }.}
The first case corresponds to an upward-sloping vertical tangent, and the second case to a downward-sloping vertical tangent. The graph of ƒ has a vertical tangent at x = a if the derivative of ƒ at a is either positive or negative infinity.

For a continuous function, it is often possible to detect a vertical tangent by taking the limit of the derivative. If

{\displaystyle \lim _{x\to a}f’(x)={+\infty }{\text{,}}}{\displaystyle \lim _{x\to a}f’(x)={+\infty }{\text{,}}}
then ƒ must have an upward-sloping vertical tangent at x = a. Similarly, if

{\displaystyle \lim _{x\to a}f’(x)={-\infty }{\text{,}}}{\displaystyle \lim _{x\to a}f’(x)={-\infty }{\text{,}}}
then ƒ must have a downward-sloping vertical tangent at x = a. In these situations, the vertical tangent to ƒ appears as a vertical asymptote on the graph of the derivative.

2 Vertical cusps

Closely related to vertical tangents are vertical cusps. This occurs when the one-sided derivatives are both infinite, but one is positive and the other is negative. For example, if

{\displaystyle \lim _{h\to 0^{-}}{\frac {f(a+h)-f(a)}{h}}={+\infty }\quad {\text{and}}\quad \lim _{h\to 0^{+}}{\frac {f(a+h)-f(a)}{h}}={-\infty }{\text{,}}}{\displaystyle \lim _{h\to 0^{-}}{\frac {f(a+h)-f(a)}{h}}={+\infty }\quad {\text{and}}\quad \lim _{h\to 0^{+}}{\frac {f(a+h)-f(a)}{h}}={-\infty }{\text{,}}}
then the graph of ƒ will have a vertical cusp that slopes up on the left side and down on the right side.

As with vertical tangents, vertical cusps can sometimes be detected for a continuous function by examining the limit of the derivative. For example, if

{\displaystyle \lim _{x\to a^{-}}f’(x)={-\infty }\quad {\text{and}}\quad \lim _{x\to a^{+}}f’(x)={+\infty }{\text{,}}}{\displaystyle \lim _{x\to a^{-}}f’(x)={-\infty }\quad {\text{and}}\quad \lim _{x\to a^{+}}f’(x)={+\infty }{\text{,}}}
then the graph of ƒ will have a vertical cusp at x = a that slopes down on the left side and up on the right side. This corresponds to a vertical asymptote on the graph of the derivative that goes to {\displaystyle \infty }\infty on the left and {\displaystyle -\infty }-\infty on the right.

3 Example

The function

{\displaystyle f(x)={\sqrt[{3}]{x}}}{\displaystyle f(x)={\sqrt[{3}]{x}}}
has a vertical tangent at x = 0, since it is continuous and

{\displaystyle \lim _{x\to 0}f’(x);=;\lim _{x\to 0}{\frac {1}{3{\sqrt[{3}]{x^{2}}}}};=;\infty .}{\displaystyle \lim _{x\to 0}f’(x);=;\lim _{x\to 0}{\frac {1}{3{\sqrt[{3}]{x^{2}}}}};=;\infty .}
Similarly, the function

{\displaystyle g(x)={\sqrt[{3}]{x^{2}}}}{\displaystyle g(x)={\sqrt[{3}]{x^{2}}}}
has a vertical cusp at x = 0, since it is continuous,

{\displaystyle \lim _{x\to 0^{-}}g’(x);=;\lim _{x\to 0^{-}}{\frac {2}{3{\sqrt[{3}]{x}}}};=;{-\infty }{\text{,}}}{\displaystyle \lim _{x\to 0^{-}}g’(x);=;\lim _{x\to 0^{-}}{\frac {2}{3{\sqrt[{3}]{x}}}};=;{-\infty }{\text{,}}}
and

{\displaystyle \lim _{x\to 0^{+}}g’(x);=;\lim _{x\to 0^{+}}{\frac {2}{3{\sqrt[{3}]{x}}}};=;{+\infty }{\text{.}}}{\displaystyle \lim _{x\to 0^{+}}g’(x);=;\lim _{x\to 0^{+}}{\frac {2}{3{\sqrt[{3}]{x}}}};=;{+\infty }{\text{.}}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值