Iterated function

In mathematics, an iterated function is a function X → X (that is, a function from some set X to itself) which is obtained by composing another function f : X → X with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right:

L = {\displaystyle {\mathit {F}},}{\displaystyle {\mathit {F}},}( K ), M = {\displaystyle {\mathit {F}},\circ {\mathit {F}},}{\displaystyle {\mathit {F}},\circ {\mathit {F}},}( K ) = {\displaystyle {\mathit {F}};^{2},}{\displaystyle {\mathit {F}};^{2},}( K ),
with the circle‑shaped symbol of function composition.
Iterated functions are objects of study in computer science, fractals, dynamical systems, mathematics and renormalization group physics.

在这里插入图片描述

Composed with itself repeatedly, similarity F
of center S enlarges the smallest regular pentagon into successive concentric pentagons, in manner that the outline of each one
passes through all vertices of the previous pentagon,
of which it is the image under F. If transformation F
is iterated indefinitely, then A and K
are the starting points of two infinite spirals.

1 Definition

The formal definition of an iterated function on a set X follows.

Let X be a set and f: X → X be a function.

Defining f n as the n-th iterate of f (a notation introduced by Hans Heinrich Bürmann[citation needed][1][2] and John Frederick William Herschel[3][1][4][2]), where n is a non-negative integer, by:

{\displaystyle f^{0}~{\stackrel {\mathrm {def} }{=}}~\operatorname {id} _{X}}{\displaystyle f^{0}~{\stackrel {\mathrm {def} }{=}}~\operatorname {id} _{X}}
and
{\displaystyle f^{n+1}~{\stackrel {\mathrm {def} }{=}}~f\circ f^{n},}{\displaystyle f^{n+1}~{\stackrel {\mathrm {def} }{=}}~f\circ f^{n},}
where idX is the identity function on X and f○g denotes function composition. That is,

(f○g)(x) = f (g(x)),
always associative.

Because the notation f n may refer to both iteration (composition) of the function f or exponentiation of the function f (the latter is commonly used in trigonometry), some mathematicians[citation needed] choose to use ∘ to denote the compositional meaning, writing f∘n(x) for the n-th iterate of the function f(x), as in, for example, f∘3(x) meaning f(f(f(x))). For the same purpose, f n was used by Benjamin Peirce[5][2][nb 1] whereas Alfred Pringsheim and Jules Molk suggested nf(x) instead.[6][2][nb 2]

2 Abelian property and iteration sequences

In general, the following identity holds for all non-negative integers m and n,

{\displaystyle f^{m}\circ f{n}=f{n}\circ f{m}=f{m+n}~.}{\displaystyle f^{m}\circ f{n}=f{n}\circ f{m}=f{m+n}~.}
This is structurally identical to the property of exponentiation that aman = am + n, i.e. the special case f(x) = ax.

In general, for arbitrary general (negative, non-integer, etc.) indices m and n, this relation is called the translation functional equation, cf. Schröder’s equation and Abel equation. On a logarithmic scale, this reduces to the nesting property of Chebyshev polynomials, Tm(Tn(x)) = Tm n(x), since Tn(x) = cos(n arccos(x)).

The relation (f m)n(x) = (f n)m(x) = f mn(x) also holds, analogous to the property of exponentiation that (am)n = (an)m = amn.

The sequence of functions f n is called a Picard sequence,[7][8] named after Charles Émile Picard.

For a given x in X, the sequence of values fn(x) is called the orbit of x.

If f n (x) = f n+m (x) for some integer m, the orbit is called a periodic orbit. The smallest such value of m for a given x is called the period of the orbit. The point x itself is called a periodic point. The cycle detection problem in computer science is the algorithmic problem of finding the first periodic point in an orbit, and the period of the orbit.

3 Fixed points

4 Limiting behaviour

5 Invariant measure

6 Fractional iterates and flows, and negative iterates

6.1 Some formulas for fractional iteration

6.1.1 Example 1

6.1.2 Example 2

6.1.3 Example 3

7 Conjugacy

8 Markov chains

9 Examples

10 Means of study

11 In computer science

12 Definitions in terms of iterated functions

13 Functional derivative

14 Lie’s data transport equation

15 See also

### PyCharm 打开文件显示全的解决方案 当遇到PyCharm打开文件显示全的情况时,可以尝试以下几种方法来解决问题。 #### 方法一:清理缓存并重启IDE 有时IDE内部缓存可能导致文件加载异常。通过清除缓存再启动程序能够有效改善此状况。具体操作路径为`File -> Invalidate Caches / Restart...`,之后按照提示完成相应动作即可[^1]。 #### 方法二:调整编辑器字体设置 如果是因为字体原因造成的内容显示问题,则可以通过修改编辑区内的文字样式来进行修复。进入`Settings/Preferences | Editor | Font`选项卡内更改合适的字号大小以及启用抗锯齿功能等参数配置[^2]。 #### 方法三:检查项目结构配置 对于某些特定场景下的源码视图缺失现象,可能是由于当前工作空间未能正确识别全部模块所引起。此时应该核查Project Structure的Content Roots设定项是否涵盖了整个工程根目录;必要时可手动添加遗漏部分,并保存变更生效[^3]。 ```python # 示例代码用于展示如何获取当前项目的根路径,在实际应用中可根据需求调用该函数辅助排查问题 import os def get_project_root(): current_file = os.path.abspath(__file__) project_dir = os.path.dirname(current_file) while not os.path.exists(os.path.join(project_dir, '.idea')): parent_dir = os.path.dirname(project_dir) if parent_dir == project_dir: break project_dir = parent_dir return project_dir print(f"Current Project Root Directory is {get_project_root()}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值