Quaternion

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843[1][2] and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space,[3] or, equivalently, as the quotient of two vectors.[4] Multiplication of quaternions is noncommutative.

Quaternions are generally represented in the form

{\displaystyle a+b\ \mathbf {i} +c\ \mathbf {j} +d\ \mathbf {k} }{\displaystyle a+b\ \mathbf {i} +c\ \mathbf {j} +d\ \mathbf {k} }
where a, b, c, and d are real numbers; and i, j, and k are the basic quaternions.

Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, and crystallographic texture analysis.[5] They can be used alongside other methods of rotation, such as Euler angles and rotation matrices, or as an alternative to them, depending on the application.

In modern mathematical language, quaternions form a four-dimensional associative normed division algebra over the real numbers, and therefore a ring, being both a division ring and a domain. The algebra of quaternions is often denoted by H (for Hamilton), or in blackboard bold by {\displaystyle \mathbb {H} .}{\displaystyle \mathbb {H} .} It can also be given by the Clifford algebra classifications {\displaystyle \operatorname {Cl} _{0,2}(\mathbb {R} )\cong \operatorname {Cl} _{3,0}^{+}(\mathbb {R} ).}{\displaystyle \operatorname {Cl} _{0,2}(\mathbb {R} )\cong \operatorname {Cl} _{3,0}^{+}(\mathbb {R} ).} In fact, it was the first noncommutative division algebra to be discovered.

According to the Frobenius theorem, the algebra {\displaystyle \mathbb {H} }\mathbb {H} is one of only two finite-dimensional division rings containing a proper subring isomorphic to the real numbers; the other being the complex numbers. These rings are also Euclidean Hurwitz algebras, of which the quaternions are the largest associative algebra (and hence the largest ring). Further extending the quaternions yields the non-associative octonions, which is the last normed division algebra over the real numbers. (The sedenions, the extension of the octonions, have zero divisors and so cannot be a normed division algebra.)[6]

The unit quaternions can be thought of as a choice of a group structure on the 3-sphere S3 that gives the group Spin(3), which is isomorphic to SU(2) and also to the universal cover of SO(3).

Quaternion multiplication table
1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

在这里插入图片描述

Cayley Q8 graph showing the six cycles of multiplication by i, j and k. (If the image is opened in the Wikipedia commons by clicking twice on it, cycles can be highlighted by hovering over or clicking on them.)

在这里插入图片描述

Graphical representation of products of quaternion units as 90° rotations in the planes of 4-dimensional space spanned by two of {1, i, j, k}. The left factor can be viewed as being rotated by the right factor to arrive at the product. Visually i ⋅ j = −(j ⋅ i).
In blue:
1 ⋅ i = i (1/i plane)
i ⋅ j = k (i/k plane)
In red:
1 ⋅ j = j (1/j plane)
j ⋅ i = −k (j/k plane)

Contents
1 History
1.1 Quaternions in physics
2 Definition
2.1 Multiplication of basis elements
2.2 Center
2.3 Hamilton product
2.4 Scalar and vector parts
3 Conjugation, the norm, and reciprocal
3.1 Unit quaternion
4 Algebraic properties
5 Quaternions and the space geometry
6 Matrix representations
7 Lagrange’s four-square theorem
8 Quaternions as pairs of complex numbers
9 Square roots
9.1 Square roots of −1
9.1.1 As a union of complex planes
9.1.2 Commutative subrings
9.2 Square roots of arbitrary quaternions
10 Functions of a quaternion variable
10.1 Exponential, logarithm, and power functions
10.2 Geodesic norm
11 Three-dimensional and four-dimensional rotation groups
12 Quaternion algebras
13 Quaternions as the even part of Cl3,0®
14 Brauer group
15 Quotations
16 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值