Euler constant

Euler’s constant (sometimes also called the Euler–Mascheroni constant) is a mathematical constant usually denoted by the lowercase Greek letter gamma (γ).

It is defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by {\displaystyle \log :}{\displaystyle \log :}

{\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left(-\log n+\sum _{k=1}^{n}{\frac {1}{k}}\right)\[5px]&=\int _{1}^{\infty }\left(-{\frac {1}{x}}+{\frac {1}{\lfloor x\rfloor }}\right),dx.\end{aligned}}}{\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left(-\log n+\sum _{k=1}^{n}{\frac {1}{k}}\right)\[5px]&=\int _{1}^{\infty }\left(-{\frac {1}{x}}+{\frac {1}{\lfloor x\rfloor }}\right),dx.\end{aligned}}}
Here, {\displaystyle \lfloor x\rfloor }\lfloor x\rfloor represents the floor function.

The numerical value of Euler’s constant, to 50 decimal places, is:[2]

0.57721566490153286060651209008240243104215933593992…

在这里插入图片描述

Contents
1 History
2 Appearances
3 Properties
3.1 Relation to gamma function
3.2 Relation to the zeta function
3.3 Integrals
3.4 Series expansions
3.5 Asymptotic expansions
3.6 Exponential
3.7 Continued fraction
4 Generalizations
5 Published digits

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值