Euler’s constant (sometimes also called the Euler–Mascheroni constant) is a mathematical constant usually denoted by the lowercase Greek letter gamma (γ).
It is defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by {\displaystyle \log :}{\displaystyle \log :}
{\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left(-\log n+\sum _{k=1}^{n}{\frac {1}{k}}\right)\[5px]&=\int _{1}^{\infty }\left(-{\frac {1}{x}}+{\frac {1}{\lfloor x\rfloor }}\right),dx.\end{aligned}}}{\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left(-\log n+\sum _{k=1}^{n}{\frac {1}{k}}\right)\[5px]&=\int _{1}^{\infty }\left(-{\frac {1}{x}}+{\frac {1}{\lfloor x\rfloor }}\right),dx.\end{aligned}}}
Here, {\displaystyle \lfloor x\rfloor }\lfloor x\rfloor represents the floor function.
The numerical value of Euler’s constant, to 50 decimal places, is:[2]
0.57721566490153286060651209008240243104215933593992…
Contents
1 History
2 Appearances
3 Properties
3.1 Relation to gamma function
3.2 Relation to the zeta function
3.3 Integrals
3.4 Series expansions
3.5 Asymptotic expansions
3.6 Exponential
3.7 Continued fraction
4 Generalizations
5 Published digits