注:本文为 “Time Constant” 相关文章合辑。
机翻,未校。
如有内容异常,请看原文。
How To Find The Time Constant in RC and RL Circuits
June 8, 2024
💡 Key learnings:
关键学习点:
-
Time Constant Definition: The time constant ( τ τ τ) is defined as the response time of a first-order linear time-invariant (LTI) system to a step input.
时间常数定义:时间常数( τ τ τ)定义为一阶线性时间不变(LTI)系统对阶跃输入的响应时间。 -
RC Circuit Time Constant: In an RC circuit, the time constant is the product of resistance ® and capacitance ©.
RC 电路时间常数:在 RC 电路中,时间常数是电阻(R)和电容(C)的乘积。 -
Significance in RC Circuits: The time constant shows how long it takes for the current in a capacitor to drop to 36.7% of its initial value.
在 RC 电路中的重要性: 时间常数显示电容器中的电流下降到其初始值的 36.7% 需要多长时间。 -
RL Circuit Time Constant: The time constant of an RL circuit is defined as the ratio of inductance (L) to resistance ®.
RL 电路时间常数:RL 电路的时间常数定义为电感(L)与电阻(R)的比率。 -
Significance in RL Circuits: The time constant indicates how long it takes for the current in an inductor to reach 63.3% of its final value, highlighting the key concept of the “time constant of rl circuit”.
在 RL 电路中的重要性:时间常数表示电感中的电流达到其最终值的 63.3% 所需的时间,突出了“RL 电路的时间常数”的关键概念。
What is the Time Constant?
什么是时间常数?
The time constant – usually denoted by the Greek letter τ τ τ (tau) – is used in physics and engineering to characterize the response to a step input of a first-order., linear time-invariant (LTI) control system.. The time constant is the main characteristic unit of a first-order LTI system.
时间常数(通常用希腊字母 τ τ τ(tau)表示)在物理学和工程学中用于描述对一阶线性时间不变(LTI)控制系统的阶跃输入的响应。时间常数是一阶 LTI 系统的主要特征单位。
The time constant is commonly used to characterize the response of an RLC circuit.
时间常数通常用于表征 RLC 电路的响应。
Let’s derive the time constant for both RC and RL circuits to understand how they respond to changes.
让我们推导出 RC 和 RL 电路的时间常数,以了解它们如何响应变化。
Time Constant of an RC Circuit
RC 电路的时间常数
Let us take a simple RC circuit, as shown below.
让我们以一个简单的 RC 电路为例,如下所示。
Assume the capacitor is initially uncharged and the switch is closed at time t = 0. Once the switch is closed, electric current i(t) begins to flow through the circuit. Using Kirchhoff Voltage Law in that single mesh circuit, we get:
假设电容器最初未充电,并且开关在时间 t = 0 t = 0 t=0 时闭合。一旦开关闭合,电流 i ( t ) i(t) i(t) 开始流过电路。在单网孔电路中使用基尔霍夫电压定律,我们得到:
V = R i ( t ) + 1 C ∫ i ( t ) d t V = R i(t)+\frac{1}{C} \int i(t) \mathrm{d}t V=Ri(t)+C1∫i(t)dt
Differentiating both sides with respect to time t t t , we get.
根据时间 t t t 对两侧进行微分,我们得到:
R d i ( t ) d t + i ( t ) C = 0 ⇒ R d i ( t ) d t = − i ( t ) C \begin{align*} R\frac{\mathrm{d}i(t)}{\mathrm{d}t}+\frac{i(t)}{C}&=0\\ \Rightarrow R\frac{\mathrm{d}i(t)}{\mathrm{d}t}&=\frac{-i(t)}{C} \end{align*} Rdtdi(t)+Ci(t)⇒Rdtdi(t)=0=C−i(t)
⇒ − R C d i ( t ) i ( t ) = d t \Rightarrow -RC\frac{\mathrm{d}i(t)}{i(t)}=\mathrm{d}t ⇒−RCi(t)di(t)=dt
⇒ d i ( t ) i ( t ) = − 1 R C d t \Rightarrow\frac{\mathrm{d}i(t)}{i(t)}=-\frac{1}{RC}\mathrm{d}t ⇒i(t)di(t)=−RC1dt
Integrating both sides we get,
对两边进行积分,我们得到:
∫ d i ( t ) i ( t ) = − 1 R C d t ⇒ log e i ( t ) + log e i ( k ) = − t R C ⇒ log e ( k i ( t ) ) = − t R C ⇒ k i ( t ) = e − t R C ⋯ ( i ) \begin{align} \int \frac{d i(t)}{i(t)}&=-\frac{1}{R C} d t \\ \Rightarrow \log _{e} i(t)+\log _{e} i(k)&=-\frac{t}{R C} \\ \Rightarrow \log _{e}(k i(t))&=-\frac{t}{R C} \\ \Rightarrow k i(t)&=e^{\frac{-t}{R C}} \cdots (i) \end{align} ∫i(t)di(t)⇒logei(t)+logei(k)⇒loge(ki(t))⇒ki(t)=−RC1dt=−RCt=−RCt=eRC−t⋯(i)
Now, at t = 0 t = 0 t=0 , the capacitor behaves as a short circuit, so, just after closing the switch, the current through the circuit will be,
现在,在 t = 0 t = 0 t=0 时,电容器表现为短路,因此,在关闭开关后,通过电路的电流将为:
I 0 = V R I_{0}=\frac{V}{R} I0=RV
Now, putting this value in equation ( i ) (i) (i) , we get,
现在,将该值代入等式 ( i ) (i) (i) 中,我们得到:
k V R = e 0 ⇒ k = R V \begin{align*} k\frac{V}{R}& = e^{0} \\ \Rightarrow k & = \frac{R}{V} \end{align*} kRV⇒k=e0=VR
Putting the value of k k k at equation ( i ) (i) (i) , we get,
将 k k k 的值代入等式 ( i ) (i) (i) 中,我们得到:
i ( t ) = V R e − t R C i(t)=\frac{V}{R}e^{-\frac{t}{RC}} i(t)=RVe−RCt
Now, if we put t = R C t = RC t=RC in the final expression of circuit current i ( t ) i(t) i(t) , we get,
现在,如果我们将 t = R C t = RC t=RC 代入电路电流 i ( t ) i(t) i(t) 的最终表达式中,我们得到:
I t = R C = V R e − 1 = 0.367 V R = 0.367 I 0 or 36.7 % of I 0 \begin{align*} I_{t = RC}&=\frac{V}{R}e^{-1}\\ &=0.367\frac{V}{R}=0.367\,I_{0}\text{ or }36.7\%\text{ of }I_{0} \end{align*} It=RC=RVe−1=0.367RV=0.367I0 or 36.7% of I0
The equation shows that R C RC RC is the time in seconds for the current in a charging capacitor to drop to 36.7 % 36.7\% 36.7% of its initial value. The initial value is the when the capacitor starts charging.
该方程表明 R C RC RC 是充电电容器中的电流下降到其初始值的 36.7 % 36.7\% 36.7% 所需的时间(以秒为单位)。初始值是电容器开始充电时的电流。
This term is quite significant in analyzing the behavior of capacitive as well as inductive circuits. This term is known as the time constant.
这个术语在分析电容电路和电感电路的行为时非常重要。这个术语被称为时间常数。
So time constant is the duration in seconds during which the current through a capacitive circuit becomes 36.7 36.7 36.7 percent of its initial value. This is numerically equal to the product of resistance and capacitance value of the circuit. The time constant is normally denoted by τ \tau τ (tau). So,
因此,时间常数是通过电容电路的电流变为其初始值的 36.7 % 36.7\% 36.7% 的持续时间(以秒为单位)。这在数值上等于电路的电阻和电容值的乘积。时间常数通常用 τ \tau τ (tau)表示。所以:
τ = R C \tau = RC τ=RC
In a complex R C RC RC circuit, the time constant will be the equivalent resistance and capacitance of the circuit.
在复杂的 R C RC RC 电路中,时间常数将是电路的等效电阻和电容。
Let us discuss the significance of the time constant in more detail. To do this, let us first plot current i ( t ) i(t) i(t) .
让我们更详细地讨论时间常数的重要性。为此,我们首先绘制电流 i ( t ) i(t) i(t) 。
A t t = 0 At \, t = 0 Att=0 , the current through the capacitor circuit is
在 t = 0 t = 0 t=0 时,通过电容器电路的电流为:
I 0 = V R I_{0}=\frac{V}{R} I0=RV
At t = R C t = RC t=RC , the current through the capacitor is
在 t = R C t = RC t=RC 时,通过电容器的电流为:
0.3670 I 0 = 0.367 V R 0.3670\,I_{0}=0.367\frac{V}{R} 0.3670I0=0.367RV
Let us consider another R C RC RC circuit.
让我们考虑另一个 R C RC RC 电路。
Circuit equations using KVL. of the above circuits are,
使用上述电路的基尔霍夫电压定律(KVL)的电路方程是:
V − R i ′ ( t ) − 2 R [ i ′ ( t ) − i ( t ) ] = 0 ⋯ ⋯ ( i i ) ⇒ V − 3 R i ′ ( t ) + 2 R i ( t ) = 0 ⇒ 2 V − 6 R i ′ ( t ) + 4 R i ( t ) = 0 ⋯ ⋯ ( i i i ) \begin{align*} V - R i'(t)-2R\left[i'(t)-i(t)\right]&=0\cdots\cdots(ii)\\ \Rightarrow V - 3R i'(t)+2R i(t)&=0\\ \Rightarrow 2V - 6R i'(t)+4R i(t)&=0\cdots\cdots(iii) \end{align*} V−Ri′(t)−2R[i′(t)−i(t)]⇒V−3Ri′(t)+2Ri(t)⇒2V−6Ri′(t)+4Ri(t)=0⋯⋯(ii)=0=0⋯⋯(iii)
and
以及:
2 R [ i ( t ) − i ′ ( t ) ] + 1 C ∫ i ( t ) d t = 0 ⋯ ⋯ ( i v ) ⇒ 2 R i ( t ) − 2 R i ′ ( t ) + 1 C ∫ i ( t ) d t = 0 ⇒ 6 R i ( t ) − 6 R i ′ ( t ) + 3 C ∫ i ( t ) d t = 0 ⋯ ⋯ ( v ) \begin{align*} 2R\left[i(t)-i'(t)\right]+\frac{1}{C} \int i(t) \mathrm{d}t&=0\cdots\cdots(iv)\\ \Rightarrow 2R i(t)-2R i'(t)+\frac{1}{C} \int i(t) \mathrm{d}t&=0 \\ \Rightarrow 6R i(t)-6R i'(t)+\frac{3}{C} \int i(t) \mathrm{d}t&=0\cdots\cdots(v) \end{align*} 2R[i(t)<