数学/线性代数 {矩阵,线性变换,矩阵运算,伴随矩阵,逆矩阵}

数学/线性代数 {矩阵,线性变换,矩阵运算,伴随矩阵,逆矩阵}

@LOC_COUNTER: 8

矩阵

定义

m行n列的矩阵: [ a i , j ] \begin{bmatrix} a_{i,j}\end{bmatrix} [ai,j]

: a i , j a_{i,j} ai,j为矩阵的(即元素), 也称为矩阵的 ( i , j ) (i,j) (i,j)元;

方阵: 若 n = m n=m n=m, 该矩阵 又称为 n n n方阵;

行向量: 若 m = 1 m=1 m=1, 该矩阵 又称为 n n n行向量(形如 [ a 1 , . . . , a n ] [a_1, ..., a_n] [a1,...,an]);

列向量: 若 n = 1 n=1 n=1, 该矩阵 又称为 m m m列向量(形如 [ a 1 . . . a n ] \begin{bmatrix} a_1 \\ ... \\ a_n \end{bmatrix} a1...an , 也可写成 [ a 1 , . . . , a n ] T [a_1, ..., a_n]^T [a1,...,an]T , 即将行向量进行转置 即变成了列向量);

相关术语

方阵的行列式

对于任意方阵A, 他可以进行行列式操作, 即一个方阵 可以转换为行列式 记作 ∣ A ∣ |A| A;
. A A A ∣ A ∣ |A| A 他俩的元素都一样, 只不过 一个是矩阵 [ ] [] [] 一个是行列式 ∣ ∣ || ∣∣;

@DELIMITER

{奇异矩阵, 非奇异矩阵}

令A为方阵, 则 ∣ A ∣ = 0 |A| = 0 A=0    ⟺    \iff A A A为奇异矩阵;
. 一个方阵, 不是奇异矩阵, 就是非奇异矩阵;

@DELIMITER

{对角阵, 单位矩阵, 纯量阵}

对角阵: 除了对角线, 其余元素均为 0 0 0;

单位矩阵: 对角线元素均为1, 的对角阵;
. 因为任何 m ∗ n m*n mn矩阵A, 不论是左乘一个单位矩阵 E m , m E_{m,m} Em,m, 还是右乘一个单位矩阵 E n , n E_{n,n} En,n, 进行矩阵乘法后, 得到的 依然是原矩阵 A A A; 因此, 单位矩阵又称为恒等变换;
. 即, 单位矩阵在矩阵乘法中的角色, 就类似于乘法中的 常数 1 1 1;

纯量阵: 对角线元素均相同, 的对角阵;
. 比如对角线元素均为 k k k的纯量阵, 他等价于 k ∗ E k*E kE(E为单位阵), 对于一个 m ∗ n m*n mn的矩阵A, 无论是左乘一个纯量阵, 还是右乘一个纯量阵, 结果都是 k ∗ A k * A kA;
. 即, 纯量阵在矩阵乘法中的角色, 就类似于乘法中的 常数 k k k;

@DELIMITER

{系数矩阵, 未知数矩阵, 常数矩阵, 增广矩阵}

MARK: @LOC_0

线性方程组: { a 11 x 1 + . . . + a 1 n x n = b 1 . . . a m 1 x 1 + . . . + a m n a n = b m \left\{ \begin{matrix} a_{11}x_1 + ... + a_{1n}x_n = b_1\\ ...\\ a_{m1}x_1 + ... + a_{mn}a_n = b_m \end{matrix} \right. a11x1+...+a1nxn=b1...am1x1+...+amnan=bm;

其中, [ a i , j ] [a_{i,j}] [ai,j]组成的 m ∗ n m*n mn矩阵为: 系数矩阵;
[ x 1 , . . . , x n ] T [x_1, ..., x_n]^T [x1,...,xn]T组成的 n ∗ 1 n*1 n1矩阵为: 未知数矩阵;
[ b 1 , . . . , b m ] T [b_1, ..., b_m]^T [b1,...,bm]T组成的 m ∗ 1 m*1 m1矩阵为: 常数矩阵;
[ a i , j ,   b i ] [a_{i,j},\ b_i] [ai,j, bi]组成的 m ∗ ( n + 1 ) m * (n+1) m(n+1)矩阵为: 增广矩阵;

@DELIMITER

{矩阵的幂}

对于 n ∗ n n*n nn的方阵 A A A, A a A^a Aa表示 a a a的矩阵A的连乘(即 A ∗ A ∗ . . . ∗ A A*A*...*A AA...A);

@DELIMITER

方阵的行列式

对于 n ∗ n n*n nn的方阵A, ∣ A ∣ |A| A(或 d e t   A det \ A det A)表示其对应的n阶行列式;

相关知识点

@DELIMITER

矩阵运算 , 参见: @MARK_1;

性质

若AB为同阶方阵, A ∗ B A*B AB B ∗ A B*A BA 不一定相同;

虽然根据@MARK_3, 我们知道 ∣ A ∗ B ∣ = ∣ B ∗ A ∣ |A*B| = |B*A| AB=BA, 但是, A ∗ B A*B AB B ∗ A B*A BA这两个矩阵 不一定是相同的;

比如 A = [ 1 0 1 0 ] , B = [ 1 1 1 1 ] A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A=[1100],B=[1111];
. A ∗ B = [ 1 1 1 1 ] A*B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} AB=[1111], 而 B ∗ A = [ 1 0 1 0 ] B*A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} BA=[1100];
. 他俩的行列式 确实相同, 都等于 0 0 0;

@DELIMITER

矩阵与行列式的 数乘;

对于n阶矩阵 [ k 0 0 0 k 0 0 0 k ] \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix} k000k000k , 把常数给提出来, 得到 k ∗ [ 1 0 0 0 1 0 0 0 1 ] k * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} k 100010001 ;

但是, 对于n阶行列式 ∣ k 0 0 0 k 0 0 0 k ∣ \begin{vmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{vmatrix} k000k000k , 把常数给提出来, 得到 k n ∗ ∣ 1 0 0 0 1 0 0 0 1 ∣ k^n * \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} kn 100010001 ;

即, 要提出来常数 k k k, 对于矩阵 是每个元素都进行 / k / k /k的操作;
但对于行列式, 只能对{某一行/ 某一列}进行 / k /k /k操作;

@DELIMITER

1 ∗ 1 1*1 11的矩阵, 等于标量

对于矩阵 [ a ] [a] [a], 其就等于一个标量 a a a;

因此, 设 A A A为行矩阵( [ a 1 , a 2 , . . . , a n ] [a1,a2,...,an] [a1,a2,...,an]), 则 A ∗ A T A* A^T AAT的值 为一个标量 等于 a 1 2 + a 2 2 + . . . + a n 2 a1^2 + a2^2 + ... + an^2 a12+a22+...+an2;
. 但如果 A A A是列矩阵, 则 A ∗ A T A*A^T AAT为一个 n ∗ n n*n nn的矩阵;

@DELIMITER

方阵相乘的行列式, 可拆开;

若AB均为同阶的方阵, 则 ∣ A ∗ B ∣ = ∣ A ∣ ∗ ∣ B ∣ |A*B| = |A| * |B| AB=AB; @MARK_3

-{ 证明

A , B : m ∗ m A,B: m*m A,B:mm, 令 2 m ∗ 2 m 2m*2m 2m2m的行列式 D = ∣ A 0 − E B ∣ D = \begin{vmatrix} A & 0 \\ -E & B \end{vmatrix} D= AE0B ( − E -E E表示其对角线都是 − 1 -1 1);
. D为特殊三角形行列式(参见: 130092391/ @MARK_3, 即 D = ∣ A ∣ ∗ ∣ B ∣ D = |A| * |B| D=AB;

遍历 [ m + 1 , m + 2 , . . . , 2 m ] [m+1, m+2, ..., 2m] [m+1,m+2,...,2m]这些列, 比如当前列为 C i C_i Ci, 设 B B B在该列上的元素(从上到下)依次为: b 1 , b 2 , . . . , b m b1, b2, ..., bm b1,b2,...,bm;
. 则执行: C i + b 1 ∗ C 1 + b 2 ∗ C 2 + . . . + b m ∗ C m C_i + b1 * C_1 + b2*C_2 + ... + bm * C_m Ci+b1C1+b2C2+...+bmCm;

然后, D = ∣ A C − E 0 ∣ D = \begin{vmatrix} A & C \\ -E & 0\end{vmatrix} D= AEC0 其中, C = A ∗ B C = A*B C=AB(矩阵乘法)

遍历 i : [ 1 , 2 , . . . , n ] i : [1,2,...,n] i:[1,2,...,n]: 交换 R i , R i + n R_i, R_{i+n} Ri,Ri+n; 此时 D = ( − 1 ) n ∣ − E 0 A C ∣ D = (-1)^n \begin{vmatrix} -E & 0 \\ A & C \end{vmatrix} D=(1)n EA0C ;
. 再次根据特殊三角形行列式, 得到: D = ( − 1 ) n ∗ ( − 1 ) n ∗ ∣ C ∣ = ∣ C ∣ D = (-1)^n * (-1)^n * |C| = |C| D=(1)n(1)nC=C;

故, D = ∣ A ∣ ∗ ∣ B ∣ = ∣ C ∣ D = |A| * |B| = |C| D=AB=C, 又因为 C = A ∗ B C = A*B C=AB, 故 ∣ A ∗ B ∣ = ∣ A ∣ ∗ ∣ B ∣ |A*B| = |A| * |B| AB=AB;

-}

推论: ∣ A ∗ B ∣ = ∣ B ∗ A ∣ |A * B| = |B* A| AB=BA;

{线性变换, 线性映射}

定义

V , W V,W V,W是定义在 K K K上的向量空间, 若函数 f : V → W f: V \to W f:VW满足: ∀ x , y ∈ V , a ∈ K \forall x,y \in V, a \in K x,yV,aK:
1 可加性 f ( x + y ) = f ( x ) + f ( y ) f(x + y) = f(x) + f(y) f(x+y)=f(x)+f(y);
2 齐次性 f ( a ∗ x ) = a ∗ f ( x ) f(a*x) = a * f(x) f(ax)=af(x);
则称 f f f函数为: 线性映射;

性质

这里的线性, 和线性函数中的线性(函数图像为直线), 是不同的;

映射 x ↦ 2 x + 2 x \mapsto 2x + 2 x2x+2, 他是线性函数, 但不是线性映射;
. 线性函数只有 k x + b kx + b kx+b b = 0 b = 0 b=0时, 才是线性映射;

@DELIMITER

m ∗ n m*n mn的实数矩阵 A A A, 那么映射 f : R n → R m f ( x ) = A x f: R^n \to R^m \quad f(x)= Ax f:RnRmf(x)=Ax线性映射;
并且 反过来说, 任意两个向量空间之间的 任意线性映射, 都可以用矩阵的方式来表达;
即: 两个向量空间之间的线性映射    ⟺    \iff 矩阵;

矩阵运算 @MARK_1

定义

{加/减}法: 两个 m ∗ n m*n mn的矩阵 A , B A,B A,B, A ± B = [ A i , j ± B i , j ] m ∗ n A \pm B = [A_{i,j} \pm B_{i,j}]_{m*n} A±B=[Ai,j±Bi,j]mn;

数乘: m ∗ n m*n mn的矩阵 A A A 与 标量 a a a的乘积为: [ a ∗ A i , j ] m ∗ n [a * A_{i,j}]_{m*n} [aAi,j]mn;

转置: 根据主对角线进行翻转, 一个 m ∗ n m*n mn的矩阵A, 转置后得到 A n ∗ m T A^T_{n*m} AnmT, 满足: A i , j = A j , i T A_{i,j} = A^T_{j,i} Ai,j=Aj,iT;

矩阵乘法: m ∗ n m*n mn的矩阵A 乘以 n ∗ k n*k nk的矩阵B, 得到 m ∗ k m * k mk的矩阵C ( C i , j C_{i,j} Ci,j为: A的第 i i i行的n个元素 与 B的第j列n个元素, 的对应元素依次乘积, 之和);

性质

#矩阵乘法的本质, 就是线性组合#;

LINK: (https://editor.csdn.net/md?not_checkout=1&articleId=131262488)-(@LOC_0);

@DELI;

矩阵乘法的转置, 可拆分性; @MARK_5

( A B ) T = B T ∗ A T (AB)^T = B^T * A^T (AB)T=BTAT;

@DELIMITER

矩阵乘法具有结合律;

A B C D E ABCDE ABCDE 一般来讲 我们会按照 ( ( ( A B ) C ) D ) E (((AB)C)D)E (((AB)C)D)E的顺序 来计算, 其实这只是一种次序 他可以有很多种次序, 结果是一样的;
. 逆序: A(B(C(DE))), (AB) (C (DE))这是正确的;

@DELIMITER

{左乘/右乘}单位矩阵, 矩阵不变;

对于 m ∗ n m*n mn的矩阵A, E m ∗ A E_m * A EmA 还是 A ∗ E n A * E_n AEn之后, 依然是 A A A;

伴随矩阵

定义

任意 n ∗ n n*n nn的方阵 A A A, 的伴随矩阵 记作 A ∗ A^* A (或 a d j ( A ) adj(A) adj(A) adjugate伴随);
. n ∗ n n*n nn的方阵 B B B, B i , j = A l g e ( i , j ) B_{i,j} = Alge(i,j) Bi,j=Alge(i,j) ( A l g e Alge Alge为方阵A的代数余子式);
. A ∗ = B T A^* = B^T A=BT (即转置后的 B B B, 就是 A A A的伴随矩阵);

错误

注意, 伴随矩阵用的是代数余子式 不是余子式;

A = [ [1, 1], [1, 0]]
求逆矩阵, 因为|A|=-1, 所以有逆矩阵, 为`A* / |A|`;
伴随矩阵为: [ [0, 1], [1, 1]]这是错误的, 因为这是代数余子式 是*要带符号的*
. 即(1,2)/(2,1)元的余子式是`1`, 但他的代数余子式是`-1 * 1`;
. 因此, A的伴随矩阵是[ [0, -1], [-1, 1]]; 逆矩阵自然为`[ [0, 1], [1, -1]]`;

性质

A ∗ A ∗ = A ∗ ∗ A A * A^* = A^* * A AA=AA;

这是两个矩阵的乘法, 虽然矩阵乘法不具有交换性, 但对这两个特殊矩阵的乘法, 他们是具有交换性的;

具体证明可参照@MARK_2, 会得到: A ∗ ∗ A A^* * A AA的结果, 也是 ∣ A ∣ ∗ E |A| * E AE;

@DELIMITER

A ∗ A ∗ = ∣ A ∣ ∗ E A * A^* = |A| * E AA=AE; @MARK_2
. E E E为单位矩阵, 不是单位行列式;
. 注意, A , A ∗ A, A^* A,A都是矩阵, 他们的结果 也是矩阵, 不是行列式;

-{

证明;

根据变形的拉普拉斯展开 (参见130069550/@MARK_0), 令 B = ( A ∗ ) T B = (A^*)^T B=(A)T, A的第i行 乘以 B的第j行, 当 i = j i = j i=j时 结果为 ∣ A ∣ |A| A, 否则 i ≠ j i \neq j i=j 则结果为 0 0 0;
. 因此, 只有当A的第i行 乘以 A ∗ A^* A第i列时, 结果为 ∣ A ∣ |A| A; 否则结果均为 0 0 0;

故, A ∗ A ∗ = [ ∣ A ∣ 0 0 0 0 ∣ A ∣ 0 0 0 0 ∣ A ∣ 0 0 0 0 ∣ A ∣ ] A * A^* = \begin{bmatrix} |A| & 0 & 0 & 0 \\ 0 & |A| & 0 & 0 \\ 0 & 0 & |A| & 0 \\ 0 & 0 & 0 & |A| \end{bmatrix} AA= A0000A0000A0000A

-}

逆矩阵

定义

对于n阶方阵A, 若存在一个n阶方阵B, 满足: A B = E AB = E AB=E (E为单位矩阵);
. 则B称为A的 逆矩阵, 记作 A − 1 A^{-1} A1; 称A是可逆的;
. 类似于 x x x的倒数是 x − 1 x^{-1} x1, 满足 x ∗ x − 1 = 1 x * x^{-1} = 1 xx1=1; 而且, x x x可能没有倒数, 当 x = 0 x=0 x=0时 他是没有倒数的;

性质

@DELI;

MARK: @LOC_7;

#方阵A可逆    ⟺    \iff A的最简形矩阵 一定是单位矩阵#;

#证明#;
可逆矩阵 ∣ A ∣ ≠ 0 |A| \neq 0 A=0, 他经过初等行变换 后 得到最简形矩阵 B B B (因为初等行变换 对行列式的影响, 如果 ∣ A ∣ ≠ 0 |A| \neq 0 A=0, 那么 ∣ B ∣ = k ∗ ∣ A ∣ , k ≠ 0 |B| = k*|A|, k \neq 0 B=kA,k=0), 因此 ∣ B ∣ ≠ 0 |B| \neq 0 B=0;
#引理#: 行最简形方阵B 如果 ∣ B ∣ ≠ 0 |B| \neq 0 B=0, 那么一定有 B B B 为单位矩阵;
. #证明#: B一定没有零行 (否则行列式为0), 因此每一行 都必须得有主元, 所以他一定是单位矩阵;

#推论#: 如果A不可逆, 则他的最简形矩阵 不是单位矩阵, 即主元个数 < N < N <N;

@DELI;

#方阵A可逆    ⟺    \iff E i Ei Ei为初等矩阵, A A A一定可以表示成 E 1 ∗ E 2 ∗ . . . ∗ E n E1*E2*...*En E1E2...En的形式#;
. 注意, 对于同阶的初等矩阵 只要是同种变换类型(比如[交换12行, 交换12列]是同种类型), 那么不存在初等{行,列}矩阵的区分; 也就是 他俩对应的初等矩阵 是相同的! (你让单位矩阵E, 进行{交换12行/ 交换12列}操作, 结果是完全相同的);

#充分性#: 根据LINK: @LOC_7, 此时有 ( E n ∗ . . . ∗ E 1 ) ∗ A = E (En * ... * E1) *A = E (En...E1)A=E; 因为初等矩阵都可逆, 故 A = E 1 − 1 ∗ . . . ∗ E n − 1 ∗ E = E 1 − 1 ∗ . . . ∗ E n − 1 A = E1^{-1} * ... * En^{-1} * E = E1^{-1} * ... * En^{-1} A=E11...En1E=E11...En1;

#必要性#: 因为 E i Ei Ei可逆, 故他们的乘积 也可逆;

@DELI;

#可逆矩阵A的本质是: 对单位矩阵 进行若干次初等{行/列}变换#;

A = E 1 ∗ . . . ∗ E n A = E1*...*En A=E1...En( E i Ei Ei表示初等矩阵);
因为 X ∗ E = E ∗ X = X X * E = E * X = X XE=EX=X ({左乘/右乘}单位矩阵, 原矩阵不变);
A = E 1 ∗ . . . ∗ E n ∗ E A = E1*...*En * E A=E1...EnE, 从初等变换的角度, 即对 E E E进行了若干次 初等行变换(以En,...,E1的顺序), 就会得到A矩阵;
A = E ∗ E 1 ∗ . . . ∗ E n A = E*E1*...*En A=EE1...En, 从初等变换的角度, 即对 E E E进行了若干次 初等列变换(以E1,...,En的顺序), 就会得到A矩阵;

#举例#;
令方阵22, 初等矩阵 E 1 ( 表示第 1 ( 行 / 列 ) 进行 ∗ 2 变换 ) = [ [ 2 , 0 ] , [ 0 , 1 ] ] , E 2 ( 表示第 1 , 2 ( 行 / 列 ) 进行交换变换 ) = [ [ 0 , 1 ] , [ 1 , 0 ] ] E1(表示第1(行/列)进行 *2变换)=[[2,0],[0,1]], E2(表示第1,2(行/列)进行 交换变换)=[[0,1],[1,0]] E1(表示第1(/)进行2变换)=[[2,0],[0,1]],E2(表示第1,2(/)进行交换变换)=[[0,1],[1,0]], 可逆矩阵 A = [ [ 0 , 2 ] , [ 1 , 0 ] ] = E 1 ∗ E 2 A=[[0,2],[1,0]] = E1 * E2 A=[[0,2],[1,0]]=E1E2;
那么 A = E 1 ∗ E 2 ∗ E A = E1 * E2 * E A=E1E2E 表示, 单位矩阵 进行: [ (交换(1,2)行变换), (第1行
2变换)]后, 会变成A;
同样 A = E ∗ E 1 ∗ E 2 A = E * E1 * E2 A=EE1E2表示, 单位矩阵 进行: [ (第1列*2变换), (交换(1,2)列变换)]后, 会变成A;

@DELI;

X = A B X = AB X=AB (AB均为同阶方阵, 且均可逆, 设逆矩阵为{A1,B1}), 则 X X X也可逆, 且 X − 1 = B 1 ∗ A 1 X^{-1} = B1 * A1 X1=B1A1;

#证明#;
因为可逆矩阵 都可以表示为 若干个(初等矩阵的乘法), 令初等矩阵是 E i Ei Ei, 设 X = A B = ( E 1 ∗ E 2 ) ∗ ( E 3 ∗ E 4 ) X = AB = (E1 * E2) * (E3 * E4) X=AB=(E1E2)(E3E4);
在根据如果可逆矩阵A = E1 * E2 * E3, 那么其逆矩阵等于E3 * E2 * E1, 因此, X − 1 = ( E 4 ∗ E 3 ) ∗ ( E 2 ∗ E 1 ) = B − 1 ∗ A − 1 X^{-1} = (E4 * E3) * (E2 * E1) = B^{-1} * A^{-1} X1=(E4E3)(E2E1)=B1A1;

#推论#;
如果A可逆, 即 A = E 1 ∗ E 2 ∗ E 3 A = E1 * E2 * E3 A=E1E2E3, 那么 A − 1 = E 3 − 1 ∗ E 2 − 1 ∗ E 1 − 1 A^{-1} = E3^{-1} * E2^{-1} * E1^{-1} A1=E31E21E11;

#推论#;
令B矩阵可逆 B = E 1 ∗ E 2 ∗ E 3 B = E1 * E2 * E3 B=E1E2E3, 对于 B ∗ A B*A BA:
如果 A = B − 1 A = B^{-1} A=B1 (即AB=E), 那么 我们有 B A = A B BA = AB BA=AB, 也就是 ( E 1 E 2 E 3 ) A = A ( E 1 E 2 E 3 ) (E1 E2 E3) A = A(E1 E2 E3) (E1E2E3)A=A(E1E2E3);
. 从初等变换的角度即: 对A依次进行[E3, E2, E1]所对应的行变换操作后 (会得到E), 相同的 对A依次进行[E1, E2, E3]所对应的列变换操作后 (也会得到E);
但是, 如果 A ≠ B − 1 A \neq B^{-1} A=B1, 那么就没有 B A = A B BA = AB BA=AB这样的结论;

@DELI;

MARK: @LOC_6;

如果A方阵可逆, 则他的任意行/列 一定不会全是0;
. 如果A的某一行i全是0, 则A * ? = C (?为任意方阵) C方阵里 第i行为零行, C就一定不是单位矩阵;
. 同理A的某一列j全是0, 则? * A = C (?为任意方阵) C方阵里 第j列为零行, C也不会是单位矩阵;

以上分析的基础 是建立在, 如果A的逆矩阵为B, 则AB = BA (逆矩阵是满足交换律的);

@DELI;

若A方阵的逆矩阵为B, 则 A B = B A = E AB = BA = E AB=BA=E, 也就是 左乘或右乘 都可以, 虽然矩阵乘法不满足交换律 但矩阵与其逆矩阵的乘法 是满足交换律的;
. 比如: A = [ [1, 1], [1, 0]], 他的逆矩阵 B = ?, 那么你ABBA 都会得到E;

@DELI;

若A,B为同阶方阵, 且均可逆, 则 A ∗ B A*B AB也可逆, 且逆矩阵为 B − 1 ∗ A − 1 B^{-1} * A^{-1} B1A1;

A B ∗ x = E AB * x = E ABx=E (x即为AB的逆矩阵)
. x = B − 1 ∗ A − 1 x = B^{-1} * A^{-1} x=B1A1, 则 A B ∗ x = A ∗ E ∗ A − 1 = A ∗ A − 1 = E AB * x = A * E * A^{-1} = A * A^{-1} = E ABx=AEA1=AA1=E;

@DELI;

若A可逆, 则对于 k ≠ 0 k \neq 0 k=0, k ∗ A k*A kA的逆矩阵为: 1 k ∗ A − 1 \displaystyle \frac{1}{k} * A^{-1} k1A1;

因为 ( k ∗ A ) ∗ ( A − 1 k ) = E (k * A) * (\frac{A^{-1}}{k}) = E (kA)(kA1)=E;

@DELI;

若方阵A可逆 (即 A A − 1 = E AA^{-1} = E AA1=E), 则 A − 1 A A^{-1} A A1A也等于 E E E;

A ∗ A − 1 = A − 1 ∗ A = E A * A^{-1} = A^{-1} * A = E AA1=A1A=E, 满足交换律;

@DELIMITER

任何矩阵, 都存在伴随矩阵, 但不一定存在逆矩阵;

@DELIMITER

若A可逆, 则其逆矩阵为 A ∗ ∣ A ∣ \displaystyle \frac{A^*}{|A|} AA; (证明参见@MARK_4)

@DELIMITER

A可逆    ⟺    \iff ∣ A ∣ ≠ 0 |A| \neq 0 A=0;
. 因此, 可逆矩阵A, 一定是非奇异矩阵;

充分性
. 记A的逆矩阵为B, 则 A B = E AB = E AB=E, 根据方阵相乘的行列式, 可拆开 (参见@MARK_3), 因此: ∣ A B ∣ = ∣ A ∣ ∗ ∣ B ∣ = 1 |AB| = |A| * |B| = 1 AB=AB=1, 因此 ∣ A ∣ |A| A一定不为0;

必要性 @MARK_4
. 伴随矩阵最重要的公式是: A ∗ A ∗ = ∣ A ∣ ∗ E A * A^* = |A| * E AA=AE, 可以发现 他其实和逆矩阵的定义 A ∗ A − 1 = E A * A^{-1} = E AA1=E非常相像, 只是多一个常数 ∣ A ∣ |A| A;
. ∣ A ∣ ≠ 0 |A| \neq 0 A=0时, 他才可以移动到左侧 (否则就是除0错误了), 得到: A ∗ A ∗ ∣ A ∣ = E \displaystyle A * \frac{A^*}{|A|} = E AAA=E, 因此, 他的逆矩阵即 A ∗ ∣ A ∣ \frac{A^*}{|A|} AA;

@DELIMITER

若A可逆 记A的逆矩阵为B, 则B也是可逆的 且B的逆矩阵为A;

即满足对称性; A的逆矩阵为B, 则B的逆矩阵为A;

@DELIMITER

若可逆, 则逆矩阵是唯一的

@DELIMITER

若A可逆, 则 A T A^T AT也可逆;

A ∗ A − 1 = E A * A^{-1} = E AA1=E, 两侧同时取转置, ( A ∗ A − 1 ) T = E (A * A^{-1})^T = E (AA1)T=E, 根据@MARK_5的转置性质, ( A − 1 ) T ∗ A T = E (A^{-1})^T * A^T = E (A1)TAT=E;
. 因此, A T A^T AT ( A − 1 ) T (A^{-1})^T (A1)T 互为逆矩阵;

例题

@DELI;

假如 A B AB AB是可逆方阵 (不一定同阶), A X B = C AXB = C AXB=C, 求 X X X;

根据130116452--@MARK_4的方程等效变换, [两侧左乘 A − 1 A^{-1} A1]–[两侧右乘 B − 1 B^{-1} B1], 得到: E 1 X E 2 = X = A − 1 C B − 1 E_1 X E_2 = X = A^{-1} C B^{-1} E1XE2=X=A1CB1;

错误

@DELI;

如果AB都可逆, 你不可以说 A B = B A AB = BA AB=BA;

比如, A是(交换12{行/列})的初等矩阵, B是(将第1{行/列}*K)的初等矩阵, 那么 显然 A B E ≠ B A E ABE \neq BAE ABE=BAE;

如果 A B = E AB = E AB=E, 那么是有 A B = B A AB = BA AB=BA的 (AB互为逆矩阵);

如果 A , B A,B A,B不可逆, 也可能有 A B = B A AB = BA AB=BA (比如AB都是零矩阵, 再比如 A E = E A AE = EA AE=EA 其中A可以是任意方阵);

@DELI;

只要|A| != 0, 则他一定存在逆矩阵, 这是真理; 如果你找不到 肯定是你自己计算出错; 就通过A* / |A| (伴随矩阵 除以 A的行列式), 就是逆矩阵;

求逆矩阵(以及判断是否可逆)

定义

方式1: 变成行最简形矩阵

A − 1 ∗ A = E A^{-1} * A = E A1A=E, 引理: 任何可逆矩阵 一定可以写成 若干个初等矩阵的乘积;
A − 1 = E 1... E n A^{-1} = E1...En A1=E1...En (Ei为初等矩阵), 那 E 1... E n ∗ A E1...En * A E1...EnA 从初等矩阵的角度看 意味着: 对A矩阵 依次进行[En, ..., E1] 所对应的 初等行变换操作后 会变成单位矩阵E;
. 根据LINK: LOC_7, 我们可以让A 使用初等行变换变成 行最简; 如果该行最简矩阵 不是单位矩阵E 则表明A不可逆; 否则 比如通过初等行变换[R1, ..., Rn] A变成了单位矩阵 即Rn * ... * R1 * A = E (根据矩阵乘法的结合律, 即运算次序是: 让A左乘R1 然后左乘R2 … 最后左乘Rn), 因此 逆矩阵为Rn * ... * R1;

这里有个技巧, 不需要去得到这些初等矩阵 然后进行矩阵乘法, 即Rn * ... * R1便是A的逆矩阵, 这很麻烦 有更方便的做法;
LINK: (https://editor.csdn.net/md/?not_checkout=1&articleId=130755938)-(@LOC_2);
. 我们要计算Rn * ... * R1 他等于Rn * ... * R1 * E, 也就是 让E也去进行依次进行R1, R2, ..., Rn的初等行变换, 最终就会变成Rn * ... * R1这个矩阵;

即令分块矩阵(A, E) 你使用初等行变换(高斯消元法) 让他变成 行最简形 (A1, E1)
如果A1 = E, 则A可逆 且 A − 1 = E 1 A^{-1} = E1 A1=E1; 否则 A1 != E 则A不可逆;

方式2: 伴随矩阵

判断是否可逆: ∣ A ∣ |A| A 是否不等于0;

求逆矩阵, A − 1 = A ∗ / ∣ A ∣ A^{-1} = A^{*} / |A| A1=A/∣A;

例题

已知A可逆, 求 A − 1 ∗ B A^{-1}*B A1B的值;

朴素的做法是: 分两步, 先求出 A − 1 A^{-1} A1 然后做一次矩阵乘法;

更好的做法:
因为 A − 1 = E 1 ∗ . . . ∗ E n A^{-1} = E1*...*En A1=E1...En(初等矩阵), 那么答案 A − 1 ∗ B A^{-1}*B A1B意味着 让B依次执行[En, ..., E1] 初等行变换, 最终的 B 1 B1 B1矩阵 就是答案 A − 1 ∗ B A^{-1}*B A1B;
A − 1 A A^{-1}A A1A的含义 也是让A依次执行[En, ..., E1] 初等行变换, 最终得到 A 1 A1 A1是答案矩阵;
因此, 对矩阵 [ A , B ] [A, B] [A,B] 让他变成行最简形矩阵 [ E , B 1 ] [E, B1] [E,B1], 那么 B 1 B1 B1就等于 A − 1 ∗ B A^{-1}*B A1B;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值