数学 {费马引理}

费马引理阐述了在数学分析中,如果一个函数在某点可导且该点是极值点,那么该点必须是函数的驻点,即导数值为零。然而,驻点不一定是极值点,例如函数x^3在x=0处就是驻点但不是极值点。寻找可微函数的极值点可以通过解导数等于零的方程来实现,得到的解集即为驻点集合,其中包含可能的极值点。
摘要由CSDN通过智能技术生成

数学 {费马引理}

费马引理

定义

#费马引理 Fermat's theorem (stationary points)#
条件: x 0 x_0 x0为极值点, 且 f ( x ) f(x) f(x) x 0 x_0 x0可导
结论: x 0 x_0 x0驻点

@DELI;

#证明#
考虑 x 0 x_0 x0左导数, 其分子是 ≤ 0 \leq 0 0的 分母是 > 0 > 0 >0, 因此左导数是 ≤ 0 \leq 0 0的; 类似可得右导数是 ≥ 0 \geq 0 0;
而因为可导 故左导等于右导, 必然导数为 0 0 0;

相关定义

#推论#
函数 f ( x ) f(x) f(x)在其定义域上的极值点 要么是不可导点 要么是驻点;
. 正式定义里还加了一个要么是边界点 (即定义域的边界点 比如(1,3]中的3是边界点), 我觉得没必要 因为边界点一定是不可导点;

性质

@DELI;

费马引理的用途: 找到可微函数 在某个开集定义域上的极值点;
. 具体算法是: 求解 f ′ ( x ) = 0 f'(x) = 0 f(x)=0 这个方程 X X X为其解集(即驻点集合), 那么极值点一定 ⊂ X \subset X X; 因为费马引理表明 该函数的任意极值点 都是驻点;
但要注意, 费马引理只给出了必要条件 即: 虽然可微函数的极值点 一定是驻点, 但反之不然 驻点不一定就是极值点 (比如 x 3 x^3 x3的0处是驻点, 但不是极值点);

@DELI;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值