隐函数的求导

目录

隐函数的定义:

例题:

 参数方程确定函数的导数

 例题:

 相关变化率

​编辑


隐函数的定义:

有隐函数就有显函数,我们首先要了解显函数的定义:

 隐函数:

例如:

对于有些隐函数,我们可以显化:

 

 但是有些隐函数,我们并不能显示化

 这个隐函数,我们就不能显示化

对于这个函数,我们发现以下特征:

当x趋近于正无穷时,y也趋近于正无穷。

当x趋近于负无穷时,y也趋近于负无穷。

假设我们把这里的x当作1,然后再对y进行求导 

 所以函数就单调递增,我们如何对隐函数进行求导呢?

 由该二元函数确定的隐函数f(x),假如我们想要对该隐函数求导。

我们把y代入到f(x)中 ,原来的式子应该恒等于0

所以求导方法就是在分式两边同时对x进行求导。

例题:

 

 

 

 这种函数叫做幂指函数,对于这种函数,我们求导时是按照哪一种法则进行求导呢?

我们可以先对两端同时取对数:

 幂指函数的求导:对数求导法

 对于这种乘积的形式,我们也可以使用对数求导法:

 参数方程确定函数的导数

 我们进行分析:

 

我们进行证明:

 例题:

 

 

 

 相关变化率

 

x和y都随着t的变化而变化。

 

 x和y又满足一些关系。

假如我们知道了x或者y一个对t的变化关系,我们根据x和y的关系得出另一个变量与t的变化关系,这就叫做相关变化率

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值