高数基础3

目录

极限的概念,性质以及存在准则

求极限的方法

 ​编辑

常用的基本极限

 1的无穷次方常用的结论

例题:

 方法2:利用等价无穷小代换求极限

例题:

 常用的等价无穷小

 利用有理运算法则求极限

例题


极限的概念,性质以及存在准则

 

 

 

 

求极限的方法

 

 我们先讲画对号的这五类极限的求法

常用的基本极限

后面的两个极限有记忆方法:

 

 我们写两个和这个类似的极限,判断极限值是否存在:

 答:极限值不存在,我们首先要知道一个定义:对于这类幂指函数,我们必须保证底数大于0,对于第一个极限,当x从x轴的左侧趋向于0时,底数是小于0的,不符合我们的条件。

而对于第二个极限,当x趋向于负无穷时,函数的底数是负数,不符合条件。

那么对于下面的两个极限应该如何求呢?

 

 我们可以将幂指函数转换为对数函数进行求解:

 所以对于这类形式的无穷大的零次方的结果为1.

 

对于这类问题,我们可以记忆为老大问题:

例如当x趋向于无穷大的时候,最高此项代表的就是老大,当x趋向于0时,最低此项代表的就是老大。

我们举几个例子:

 

 我们需要分情况:

 

 1的无穷次方常用的结论

我们进行证明:

 

 我们需要保证里面的a(x)的极限为0,B(x)的极限为无穷。

例题:

 第一种写法:

 这种写法是错误的:

 正确的写法:

 

 

第二种解法:

 

 

我们先检查极限类型,为1的无穷。

 方法2:利用等价无穷小代换求极限

乘除关系可以换,加减关系看情况换。

 

 

对于减法,当代换之后的两个无穷小不等价的情况下,可以使用代换。

简单的说:不等价的时候,可以用减法代换。

我们进行证明:

 

 对于加法,当代换之后的两个求极限的结果存在,并且不为-1,我们就可以使用加法的代换。

例题:

 

 常用的等价无穷小

 

 我们对这个极限进行证明:

 

 由上面的两条就可以推出这个结论:

 

我们可以使用洛必达法则进行证明:

 

例题 

 

 

  

 

 不对,原因如下:

 我们该如何做题呢?

 我们先分析极限的形式:

极限的形式为0比0

第二种解法:洛必达法则:

 第三种解法:使用拉格朗日中值定理:

 

先看极限的形式:

极限的形式为0比0

 

第二种方法:利用洛必达法则:

 

 方法3:使用拉格朗日中值定理:

 

 

 解法2:

 我们对这个结论进行证明:

对于条件我们进行说明:

 

 我们使用这个结论来解决题目:

 

 这个结论适用于求幂指函数的极限。

我们只对a(x)和a(x)*B(x)有要求,对B(x)本身没有要求:

例如:

 

极限的形式是: 零比零

 

我们先判断极限的形式:

极限的形式是0比0

 

第二种方法:我们可以使用洛必达法则:

 利用有理运算法则求极限

 前提条件是两个极限存在才可以使用。

 我们可以使用反证法:

 

 例如:

 

 

 

 只有一个存在和一个不存在相加减的结果是确定的不存在,其他都是不确定的。

 我们可以把极限中的非零因子提取出来。

 如果极限存在的话,假如分母的极限为0,那么分子的极限一定为0.

 我们进行思考,如果极限存在,假如分子的极限为0,那么分母的极限是否为0?

我们只需举出一个反例即可:

 什么情况下分子为0可以推出分母为0?

极限为A并且不等于0的前提下,分子的极限为0可以推出分母的极限为0.

总结:商的极限存在,分母为0可以推出分子为0。商的极限存在并且不等于0的前提下,分子为0可以推出分母为0.

例题

 

 

 我们引入一个结论:

我们进行证明:

 

 

 

 

 

 

我们先看极限的类型,是无穷比无穷。

 对于无穷比无穷,我们采用的方法是把无穷因子提取出来,这里的无穷因子是x

 第二种方法:

我们进行分解:

第三种方法:抓大头

适合选择题或者填空题:

 

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值