升级NVIDIA显卡驱动及卸载CUDA

目录

0 前言

1 准备工作

1.1 查看NVIDIA版本

1.2 查看CUDA版本

2 更新显卡驱动

3 升级CUDA

3.1 卸载老CUDA

3.2 安装新CUDA


0 前言

近年来,人工智能和深度学习技术的快速发展,使得NVIDIA显卡及其配套的CUDA计算平台成为了开发者不可或缺的工具。然而,随着框架版本的迭代(如PyTorch 2.0+对CUDA 11.8+的依赖)和硬件性能的升级,许多开发者常常面临驱动版本过旧导致兼容性差、CUDA环境冲突等问题。例如,在尝试运行YOLO系列当前最新的YOLOv12模型时,requirements里的环境最低要求CUDA版本为12,torch版本为2.2,均高于博主之前教程中的11.8及2.0,因此,需要卸载重新安装较新版本的CUDA;或在训练大型神经网络时,旧版驱动无法充分发挥GPU性能。驱动的更新均有风险,请明确自己的目的再进行此操作。

本文将以Windows11为例,详细讲解如何升级NVIDIA显卡驱动(风险操作)、彻底卸载旧版CUDA Toolkit,并安装较新的CUDA环境。

1 准备工作

查看当前电脑中NVIDIA驱动版本及支持的最高CUDA版本、当前电脑中是否安装CUDA及安装CUDA版本。

1.1 查看NVIDIA版本

打开cmd输入如下指令 

nvidia-smi

可以看到驱动版本如图,绿色方框内为驱动版本,可以看到我的驱动版本为560.94,蓝色方框内为支持的最高CUDA版本,我这里为12.6,如果准备安装的CUDA版本在12.6及以下,则显卡驱动不需要更新,如果没有则需要更新,更新前建议记录显卡驱动版本,避免更新后出现异常情况无法复原。(注意:驱动更新属于风险操作,请确保自己有能力应对突发状况再更新,出现异常及时恢复至稳定版本!) 

1.2 查看CUDA版本

打开cmd输入如下指令

nvcc -V

可以看到我这里安装的是CUDA11.8,因此需要将原有的CUDA卸载,安装较新的版本。

如果没有搜索到可以按下方默认安装目录查找

"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA"

如果有文件夹,则安装的是对应版本,如果有多个文件夹则点开看哪个是较新安装的。

文中章节仅为了方便阅读,推荐按照3.1 ,2 ,3.2 的顺序先卸载老CUDA,再安装新NVIDIA驱动,再安装新CUDA。驱动的更新均有风险,请明确自己的目的再进行此操作。

2 更新显卡驱动

更新NVIDIA显卡驱动,这里我只推荐去官网下载新版本的驱动程序安装,其他使用驱动管理软件安装的方法这里均不推荐。

访问NVIDIA驱动更新官网

下载 NVIDIA 官方驱动 | NVIDIA

搜索自己显卡型号,不确定型号可以打开任务管理器, 点击左侧性能,找到GPU查看,例如我这里显卡型号为GTX 1660SUPER。

可以在搜索框中输入,也可以分别点击查找,均可找到目标显卡,要注意系统版本,然后点查找。

可以找到多个版本,如GeForce Game Ready Driver 和 NVIDIA Studio 驱动程序 两大系列,两个都可以下载安装,没有游戏需求可以下载NVIDIA Studio,如果只有一种则下载那一种就可以,左下角红色方框内为驱动版本,较新的一般都可以,稳定性应该也都差不多,之前自己显卡的驱动版本记清楚,这里如果下到不稳定的显卡驱动版本还需要还原到之前的驱动版本。

 可以直接下载默认看到的,也可以展开下载其余版本,都可以。

下载左侧第一个就可以。

打开,第一个解压选ok,等待解压完成后选显卡驱动

 

同意后点精简,然后下一步,然后点升级耐心等待

3 升级CUDA

3.1 卸载老CUDA

安装新CUDA,需要先将老CUDA卸载,这里输入win+i,打开应用,然后搜索 nvidia ,

可以看到所有nvidia相关的程序都被列出来,这里我们只保留图中框选的三个,分别是NVIDIA GeForce Experience、NVIDIA PhysX、NVIDIA 图形驱动程序,其余全部卸载。

全部卸载完成后找到安装目录,默认CUDA安装目录如下

"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA"

将里面所有的文件夹删除,CUDA则删除完毕。卸载完成后最好重启一下电脑。

3.2 安装新CUDA

这里仍然前往NVIDIA官网下载CUDA,网址如下

CUDA Toolkit Archive | NVIDIA Developer

需要什么版本可自行下载,这里给出CUDA12.4的下载链接

夸克网盘下载  或者 点击下载

下载完之后运行安装,建议安装到默认路径,所以C盘需要留有20G以上的存储空间,一直点击下一步,直到出现这个界面点击自定义,然后全部勾选即可。

 

然后点击下一步,等待安装即可。

安装完成可打开cmd,输入如下指令

nvcc -V

查看新版本的CUDA情况。

 

至此,NVIDIA的驱动更新及CUDA的卸载安装均已完成,推荐按照3.1 ,2 ,3.2 的顺序先卸载老CUDA,再安装新NVIDIA驱动,再安装新CUDA。

关注微信公众号 快速联系我~

### 正确卸载NVIDIA显卡驱动程序的方法 #### 判断当前系统中的NVIDIA驱动状态 为了确认系统中是否存在NVIDIA驱动,在终端输入`nvidia-smi`来查看是否有GPU使用信息显示。如果有,则说明NVIDIA驱动已安装;如果没有该命令或无任何输出,可能意味着驱动未安装[^1]。 #### 准备工作 对于正在运行并依赖于NVIDIA GPU的应用和服务,应当先停止它们的工作。特别是当涉及到X Window System (即图形界面) 的时候,可以通过切换到字符模式(`sudo init 3`) 来确保所有与GUI有关的服务都被关闭,从而不影响后续操作[^2]。 #### 方法一:通过官方安装文件进行卸载 如果之前是以`.run`脚本形式安装的NVIDIA驱动,那么可以利用相同的安装包来进行卸载。假设下载的是名为`NVIDIA-Linux-x86_64-495.46.run`的安装包,可以在拥有管理员权限的情况下执行如下命令完成卸载过程: ```bash sudo ./NVIDIA-Linux-x86_64-495.46.run --uninstall ``` 之后再次检查驱动的状态,并根据实际情况决定是否需要重启计算机以使更改生效。 #### 方法二:采用APT工具清理残留组件 除了上述方法外,还可以借助Ubuntu自带的软件包管理系统(APT)更全面地移除相关联的数据。具体做法为: ```bash sudo apt-get --purge remove nvidia* sudo apt autoremove ``` 这组指令不仅会删除核心驱动本身,还会清除那些不再必要的依赖项和其他关联文件,达到更加干净彻底的效果[^3]。 #### 特殊情况处理——CUDA环境下的额外步骤 若曾经配置过CUDA开发平台,建议进一步采取措施将其一同去除,以免遗留不必要的库文件影响未来其他版本的部署: ```bash sudo apt-get purge cuda* ``` 以上就是针对不同场景下正确卸载NVIDIA显卡驱动的具体流程介绍。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笑脸惹桃花

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值