YOLOv11/YOLOv8网络结构图绘制,本文适用于论文添加修改模块,绘制属于自己的网络结构图

前言

在深度学习领域,YOLO(You Only Look Once)系列目标检测算法凭借其高效性和准确性,广泛应用于各种实际场景中,例如自动驾驶、安防监控和农业监测等。随着算法的不断发展,YOLO 的网络结构逐步优化,例如 YOLOv8 和 YOLOv11 引入了更加轻量化、高效的模块,使得模型在速度和精度上达到了新的平衡。然而,对于研究者来说,直接使用现成的模型并不能满足某些特定任务的需求,因此对网络结构进行自定义修改和优化就显得尤为重要。

为了便于研究人员在论文中直观展示自己改进后的网络结构,清晰地表达创新点,绘制网络结构图是一项关键工作。本文以 YOLOv8 和 YOLOv11 的网络结构为基础,分别详细讲解如何通过visio工具绘制属于自己的网络结构图,帮助研究人员更好地呈现模型的改进细节。

无论是针对初学者还是有经验的深度学习研究者,本文都将为您提供清晰的指导和实用的技巧,使您能够快速上手绘制高质量的网络结构图,为您的研究工作增添亮点。

网络结构图需要按照训练时使用到的yaml文件绘制,以下是具体的方法。

本文所用软件为Visio。

YOLOv8网络结构图

首先查看yolov8的yaml文件,只查看下面的backbone和head部分就可以。

总览

根据这个yaml,可以看出yaml文件的结构, [from, repeats, module, args]表示层的来源、重复次数、模块类型和参数,from:表示该模块的输入来源,如果为-1则表示来自于上一个模块中,如果为其他具体的值则表示从特定的模块中得到输入信息,为列表如[-1,6]则表示来自上一层和第6层;将所有的模块添加到visio软件中,一共有7个Conv,8个C2f,1个SPPF,2个Upsample,4个Concat,3个Detect,全部添加如下图,每个不同的模块可以设置不同的颜色,这样更加美观一些。

添加好之后按照顺序从上往下,逐层往下,第一层为0,第二层为1...,因此本文中所有的层数从0开始计算。

backbone

因此先把backbone部分按照顺序放在同一列,并用箭头依次连接,如下图。

 如果这里添加了注意力机制或者修改了主干网络,仍然是按照顺序,替换或者添加相应的部分,比如下面的yaml文件,更改了GhostConv和C3Ghost,添加了CBAM注意力机制,主干结构如下图

根据这个yaml,可以看到大部分的Conv都被GhostConv替换,C2f全部被C3Ghost替换,在第10层添加了CBAM,因此我们的结构图需要相应修改如下。

neck

主干部分绘制结束,接下来看下图默认的yolov8中head中所有元素,最后Detect先忽略。

可以看到第11层、14层、17层的Concat的from为列表,分别是-1和对应的层(从0开始),因此绘制时需要注意应该从两个位置接收,因此有两个箭头指向Concat。

绘制出来大概长这个样子, 以左下角的Upsample为第10层,左下角的C2f为第21层,这样绘制是因为第11层的Concat还需要传入第6层的C2f,第20层的Concat还需要传入第9层的SPPF,推荐先这样画方便最后整合,这部分属于neck,也就是颈部。

完整的网络结构图

最后是3个检测头,分别从第15、18、21层传入Detect,因此合并后的完整的网络结构图如下,再在最上方加个输入,即完成。

修改模块的网络结构图

如果是修改了模块,仍然是更改了GhostConv和C3Ghost,添加了CBAM注意力机制,yaml文件如下。

这个绘制成的网络结构图应该为

YOLOv11网络结构图

YOLOv11的网络结构图绘制与YOLOv8的方法一样,我们先查看YOLOv11的yaml文件。

总览

根据这个yaml,可以看出yaml文件的结构, [from, repeats, module, args]表示层的来源、重复次数、模块类型和参数,from:表示该模块的输入来源,如果为-1则表示来自于上一个模块中,如果为其他具体的值则表示从特定的模块中得到输入信息,为列表如[-1,6]则表示来自上一层和第6层;可以看到相比YOLOv8,将C2f替换为C3k2模块,第9层之后增加C2PSA模块,将所有的模块添加到visio软件中,一共有7个Conv,8个C3k2,1个SPPF,1个C2PSA,2个Upsample,4个Concat,3个Detect,全部添加如下图,每个不同的模块可以设置不同的颜色,这样更加美观一些。因此先将所有的模块列出来。

添加好之后按照顺序从上往下,逐层往下,第一层为0,第二层为1...,因此本文中所有的层数从0开始计算。

backbone

因此先把backbone部分按照顺序放在同一列,并用箭头依次连接,如下图。

如果这里添加了注意力机制或者修改了主干网络,仍然是按照顺序,替换或者添加相应的部分,与上面YOLOv11的方法一致,这里不再赘述,不懂的可以评论区问。

neck

主干部分绘制结束,接下来看下图默认的yolov8中head中所有元素,最后Detect先忽略。

绘制出来大概长这个样子, 以左下角的Upsample为第11层,右下角的C3k2为第22层,这样绘制是因为第12层的Concat还需要传入第6层的C3k2,第21层的Concat还需要传入第10层的SPPF,推荐先这样画方便最后整合,这部分属于neck,也就是颈部。

完整的网络结构图

最后是3个检测头,分别从第16、19、22层传入detect,因此合并后的完整的网络结构图如下,再在最上方加个输入,即完成。

修改模块的结构图同理,对照着yaml画就可以,自己不会绘制的可以私信我帮忙绘制网络结构图。

### 如何美化基于Flask和YOLO的Web界面 #### 使用现代前端框架提升UI设计 为了增强用户体验并使Web应用程序更加美观,可以考虑引入现代化的前端库和技术栈。例如Bootstrap是一个流行的CSS框架,提供了响应式的网格布局以及丰富的组件样式[^1]。 ```html <!-- 引入 Bootstrap CSS --> <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet"> ``` #### 整合ECharts实现数据可视化 对于涉及图像检测结果展示的应用程序来说,在页面上直观呈现处理后的图片及其标注信息非常重要。借助像ECharts这样的图表库可以帮助创建动态且视觉效果出色的统计图或热力图来辅助说明YOLO算法的工作成果[^2]。 ```javascript // 初始化 ECharts 图表实例 var chartDom = document.getElementById('main'); var myChart = echarts.init(chartDom); var option; option = { title: { text: '目标检测分布' }, tooltip: {}, xAxis: {data: ["类别A", "类别B"]}, yAxis: {}, series: [{name:'数量', type:'bar', data:[5, 20]}] }; myChart.setOption(option); ``` #### 应用自定义主题与配色方案 通过调整网站的整体色调、字体大小及间距等细节部分能够有效改善用户的浏览感受。建议根据品牌形象定制专属的颜色组合,并保持一致性贯穿整个站点的设计之中;同时也要注意确保文字可读性和按钮点击区域足够大以便于操作。 #### 增加动画效果提高互动性 适当加入一些过渡动画可以让网页看起来更生动有趣而不失专业感。利用CSS3中的`transition`属性或是专门用于构建复杂动画序列的GSAP (GreenSock Animation Platform),可以在不影响性能的前提下为用户提供更好的反馈机制[^3]。 ```css /* 定义简单的悬停变色 */ .button:hover { background-color: #ffcccb; transition: all .3s ease-in-out; } ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笑脸惹桃花

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值