目标检测:YOLOv11(Ultralytics)环境配置,适合0基础纯小白,超详细

目录

1. 前言

2. 查看电脑状况

3. 安装所需软件

3.1 Anaconda3安装

3.2 Pycharm安装

4. 安装环境

4.1 安装cuda及cudnn

4.1.1 下载及安装cuda

4.1.2 cudnn安装

4.2 创建虚拟环境

4.3 安装GPU版本

4.3.1 安装pytorch(GPU版)

4.3.2 安装ultralytics库

4.4 安装CPU版本

4.4.1 安装pytorch(CPU版)

4.4.2 安装ultralytics库

5. 源码及使用环境

5.1 下载YOLOv11源码

5.2 pycharm导入环境

6. 验证环境


1. 前言

YOLO11是Ultralytics公司YOLO系列实时目标检测器的最新迭代版本,它以尖端的准确性、速度和效率重新定义了可能实现的性能。在之前YOLO版本取得的显著进步基础上,YOLO11在架构和训练方法上进行了重大改进,使其成为各种计算机视觉任务中的通用选择。除了传统的目标检测外,YOLO11 还支持目标跟踪、实例分割、姿态估计、OBB定向物体检测(旋转目标检测)等视觉任务。

如果已经会配置YOLOv8的环境,本文不需要重复配置,下载最新的YOLOv11训练文件即可。

点击下载训练源码 夸克网盘下载 ,建议先全部转存提前下载,若有需要下载的资源失效,可至公众号获取百度盘链接下载。

YOLOv11网络结构图,论文必备,无水印图可 微信公众号-笑脸惹桃花 回复“1111” 获取。

2. 查看电脑状况

深度学习的训练对于电脑显卡要求较高,若电脑没有独立显卡(NVIDIA卡)或者是AMD的显卡无法使用GPU进行训练,需用CPU进行训练,会慢很多。若不清楚电脑有无显卡可以打开任务管理器,点击性能往下找GPU,就可以看到是否有独立显卡,不清楚是否为独立显卡则搜索型号。

若有独立显卡则安装GPU版本的pytorch,若无独立显卡则安装CPU版本的pytorch。

嫌麻烦或者教程看不懂的友友可以私信我或者关注公众号找我配置环境哦~

3. 安装所需软件

推荐安装Anaconda3+Pycharm,都需要加入环境变量,会安装或者安装过了则跳过这一步骤。

3.1 Anaconda3安装

Anaconda3由于是国外网站下载较慢,推荐通过清华镜像源安装。

Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source MirrorIndex of /anaconda/archive/ | 清华大学开源软件镜像站,致力于为国内和校内用户提供高质量的开源软件镜像、Linux 镜像源服务,帮助用户更方便地获取开源软件。本镜像站由清华大学 TUNA 协会负责运行维护。https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=Dhttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=Dhttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=Dhttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D

选择带有Anaconda3...Windows...exe 字样的进行下载,建议寻找我图片上同版本的文件下载,不然安装后软件界面不一致,容易出现看不懂的情况,可以点击网盘下载相同版本。

下载完成之后打开Anaconda3进行安装,一直点下一步,选Just Me,安装路径不建议安装到c盘,可以直接复制粘贴修改到  D:\Anaconda3  ,也可以修改到其他路径,最好纯英文路径。

点击下一步后,需要选择添加到环境变量,如下图前三个一定要勾选,也可以按照我图中全选。

点击install安装后耐心等待进度条满安装完成即可,进度较慢,耐心等待。

3.2 Pycharm安装

安装Pycharm可以直接去官网下载,速度较快。

下载 PyCharm:JetBrains 出品的用于数据科学和 Web 开发的 Python IDE现在最新版本的 PyCharm,适用于 Windows、macOS 或 Linux。https://www.jetbrains.com/zh-cn/pycharm/download/?section=windowshttps://www.jetbrains.com/zh-cn/pycharm/download/?section=windowshttps://www.jetbrains.com/zh-cn/pycharm/download/?section=windowshttps://www.jetbrains.com/zh-cn/pycharm/download/?section=windows

往下拉下载第二个Community Edition社区免费版就可以,也可以网盘下载相同版本。

下载完之后打开安装,点下一步,遇到选择路径 修改路径到D盘或者其它除C盘外的文件夹,可以建个自己喜欢的英文名字。

需要勾选这些选项,五角星必勾选,建议全选。

再点下一步,直接安装就可以了,耐心等待进度条满安装完成即可。

教程看不懂的朋友可以私信我或者公众号找我配置环境

4. 安装环境

4.1 安装cuda及cudnn

4.1.1 下载及安装cuda

在安装pytorch前需要安装cuda,(若无显卡或intel的显卡则跳过,直接看4.2)下载cuda前需要先查看显卡支持的CUDA版本最高是多少,按下win+r键,输入cmd,在打开的页面输入:nvidia-smi ,即可查看。

上图红框位置显示即为cuda最高支持版本,本教程cuda最高版本达到11.8即可,若没有达到则需要更新显卡驱动。

CUDA Toolkit Archive | NVIDIA Developerhttps://developer.nvidia.com/cuda-toolkit-archive

在这个网站挑选下载或者直接点击夸克网盘下载下载或者点此下载 。

下载完之后运行安装,建议安装到默认路径,所以C盘需要留有20G以上的存储空间,一直点击下一步,直到出现这个界面点击自定义,然后全部勾选即可。

将下图中选项全部勾选安装。

安装完成后可以再次在cmd里输入命令:nvcc -V 查看,如下显示即安装成功

4.1.2 cudnn安装

进入cudnn官网,选择合适版本的文件。

https://developer.nvidia.com/rdp/cudnn-archivehttps://developer.nvidia.com/rdp/cudnn-archivehttps://developer.nvidia.com/rdp/cudnn-archivehttps://developer.nvidia.com/rdp/cudnn-archive

进入后在文件列表中选择cudnn版本与上面cuda安装相匹配的版本。

下载Windows版本的压缩包文件。

下载需要登录,也可以复制下载链接打开迅雷下载,或者点击链接下载下载cudnn

将得到的压缩文件进行解压,解压后得到下图三个文件夹,全选复制进cuda的文件夹中进行覆盖替换,替换完成后即cudnn安装完成。按照本文教程安装的cuda的文件夹默认在 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8 目录下。

4.2 创建虚拟环境

按下Win键,输入anaconda prompt,打开下图所示的应用。

默认进入的是base环境,base环境的版本与下载的anaconda3版本有关,因此不建议直接使用,需要新建环境,在新建环境之前建议更改默认的pip源和conda源可加速下载速度。

更改代码如下,直接输入即可,这里选择更换的是中科大源,建议使用,亲测完美运行。

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple
之后通过pip install 包名 方式安装的任何库( 除了pytorch及相关库),只要报错 ERROR: No matching distribution found for 包名 ,在python版本与本文一致的情况下,皆为源的访问速度慢导致的,可以通过以下方法临时换源下载安装,方法为 在安装包时通过  -i 参数指定镜像源,可多试几个确定哪个速度最快最稳定
pip install 包名 -i https://pypi.tuna.tsinghua.edu.cn/simple
  1. 清华大学
    URL: https://pypi.tuna.tsinghua.edu.cn/simple

  2. 阿里云
    URL: https://mirrors.aliyun.com/pypi/simple

  3. 中国科学技术大学(USTC)​
    URL: https://pypi.mirrors.ustc.edu.cn/simple

  4. 豆瓣(Douban)​
    URL: https://pypi.doubanio.com/simple

  5. 华为云
    URL: https://repo.huaweicloud.com/repository/pypi/simple

  6. 腾讯云
    URL: https://mirrors.cloud.tencent.com/pypi/simple

如:
pip install numpy==1.26.3 -i https://pypi.tuna.tsinghua.edu.cn/simple

此时新建虚拟环境(需要关闭加速软件),这里创建一个名为yolov11,python版本为3.10的虚拟环境,也可以修改为其他名,本文所用为python3.10,同时本教程所用pytorch源及python版本只支持3.10。

conda create -n yolov11 python=3.10

回车后出现新建环境提醒输入y继续,耐心等待全部下载完成后自动安装。

注意:此时如果报错

UnavailableInvalidChannel: HTTP 404 NOT FOUND for channel anaconda/pkgs/free <https://mirrors.ustc.edu.cn/anaconda/pkgs/free>

The channel is not accessible or is invalid.

You will need to adjust your conda configuration to proceed.
Use `conda config --show channels` to view your configuration's current state,
and use `conda config --show-sources` to view config file locations.

等错误,需要修改隐藏文件 .condarc文件的内容,具体路径为:c:\users\用户名\.condarc

使用记事本打开,复制下面这一段进去替换掉原本所有的内容,替换完之后保存即可

channels:
  - defaults
show_channel_urls: true
channel_alias: http://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 此时再次输入命令新建yolov11环境,本文所用为python3.10,同时本教程所用pytorch源及python版本只支持3.10。

conda create -n yolov11 python=3.10

​创建完之后输入

conda activate yolov11

进入yolov11环境之中,此时有NVIDIA显卡安装GPU版看4.3,其它需要安装CPU版看4.4。

4.3 安装GPU版本

4.3.1 安装pytorch(GPU版)

打开prompt 输入conda activate yolov11进入yolov11环境,之后输入下方命令即可安装pytorch,耐心等待安装完成。

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118

出现ERROR: No matching distribution found for torch==2.0.0+cu118等是因为python版本不对!

torch及相关库比较大,需要耐心等待下载完之后出现 done 则安装完成,因为是外网,如果下载不下来,可以点此下载torch 夸克网盘下载,然后通过pip install安装本地文件的方式安装,可以参考下图的方式,将torch放入d盘的test文件夹下,通过cd将文件目录跳转,再输入如下指令。(只支持python3.10版本,其余版本无法安装)

pip install torch-2.0.0+cu118-cp310-cp310-win_amd64.whl

耐心等待安装完成后,再输入下面的指令通过pip安装其余库。

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 --extra-index-url https://download.pytorch.org/whl/cu118

4.3.2 安装ultralytics库

这个库包含了几乎全部运行yolov11所需的环境,输入以下命令后耐心等待即可

pip install ultralytics

如果报错 ERROR: No matching distribution found for ultralytics 则输入以下指令安装

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

也可以选择安装ultralytics的对应版本所需库,如pip install ultralytics==8.3.20,上方安装不报错则默认不需要安装指定版本。安装完成出现下图则环境配置完成。

4.4 安装CPU版本

4.4.1 安装pytorch(CPU版)

有英伟达显卡的按照上述流程安装后即可跳过本部分,无英伟达显卡则需要按照下述方法进行,

打开prompt ,进入yolov11环境之后,输入如下命令即可安装cpu版本的pytorch

pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cpu

 输入指令后看到下图再按下回车则开始正常安装。

耐心等待安装完成之后安装ultralytics库。

4.4.2 安装ultralytics库

pip install ultralytics

如果报错 ERROR: No matching distribution found for ultralytics 则输入以下指令安装

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

也可以选择安装ultralytics的对应版本所需库,如pip install ultralytics==8.3.20,上方安装不报错则默认不需要安装指定版本。安装完成出现下图则环境配置完成。

5. 源码及使用环境

5.1 下载YOLOv11源码

YOLOv11(ultralytics)源码地址:

https://github.com/ultralytics/ultralytics/https://github.com/ultralytics/ultralytics/

点进去下载代码,现在还在持续更新,这里使用v8.3.20版本演示,进不去可能需要科学上网,或者点击下载  夸克网盘下载 ,我上传了多版本可以全部转存避免后续找不到,cat图片一并上传,下载8.3.0及以上版本,(压缩包内附带yolov11n.pt、yolov11s.pt和yolov11m.pt预训练权重,链接资源失效请评论区反馈,看到会补,或者至公众号下载)可以下载下图所示几个预训练权重文件,常规使用yolov11n.pt即可。

5.2 pycharm导入环境

​下载完成之后解压到D盘或其它盘文件夹内,此时点击鼠标右键文件夹通过pycharm打开,打开后需要配置虚拟环境,新版pycharm可选中文语言,点击 文件-设置,点击 项目:ultralytics-8.3.20,点击python解释器,点击右边添加解释器-添加本地解释器,

​点击Virtualenv环境 - 现有,点击右边三个点,找到刚才添加的yolov11环境的位置,按照本文配置即是D:\Anaconda3\envs\yolov11\python.exe 路径,之后一直点确定,点应用,再点确定即可。

或者新版本的界面更为简单,按照下图方式选择就可以

 选择python,接着选择刚刚添加的yolov11环境,选择python.exe,

如果找不到环境所在位置,可以输入

conda env list

 查看环境所在位置

 并寻找后选择python.exe。

 下图为环境正在加载,耐心等待完成即可,等待环境加载完成即可运行代码。

教程看不懂的朋友可以私信我或者公众号找我配置环境

6. 验证环境

下载完成后将权重文件复制到ultralytics根目录下,即本文的ultralytics-8.3.20目录下,此时可以去网上下载一只猫猫的jpg图片(或者其它图片,根据自己喜好更改),修改文件名为cat.jpg。检测环境是否有问题可以在prompt里yolov11环境下运行。注意预训练权重的文件名与代码中的文件名对应,看清楚文件名,FileNotFoundError: xxxx   does not exist 类似这种报错都是文件没找到,自己细心一点就能避免。运行下面的指令需要cd到ultralytics-8.3.20目录,不然会报错。

yolo predict model=yolo11n.pt source='cat.jpg'

输出下图即环境正常。

或者通过前边安装的pycharm运行检测,新建一个yolov11_predict.py,在文件中添加如下代码 

from ultralytics import YOLO
# 加载预训练的 YOLOv11n 模型
model = YOLO('yolo11n.pt')
source = 'cat.jpg' #更改为自己的图片路径
# 运行推理,并附加参数
model.predict(source, save=True)

运行之后如下即环境正常。

​ 如果报错 ImportError: DLL load failed while importing _imaging: 找不到指定的模块,是pillow版本问题导致的错误。

输入如下指令降低pillow的版本即可解决此问题。

pip install pillow==8.4.0

如果报错中有numpy相关的语句,如 RuntimeError: Numpy is not available ;compiled using NumPy 1.x cannot be run in NumPy 2.1.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. 等等,可以将numpy降级,输入如下代码即可解决此类问题。

pip install numpy==1.26.3

可以顺着路径查看检测后的图片,出现检测框则环境可以正常使用。

需要训练模型可以查看这篇博客,有详细的关于训练及数据集获取处理的教程哟

超详细目标检测:YOLOv11(ultralytics)训练自己的数据集,新手小白也能学会训练模型,手把手教学一看就会-CSDN博客文章浏览阅读1.6w次,点赞89次,收藏396次。对电脑小白也很简单的yolov11教程!训练自己的数据集分为4部分,先配置环境,再获取制作自己的数据集,然后修改配置训练,最后验证训练结果,附带可视化界面。YOLOv11为Ultralytics公司YOLO系列实时目标检测器的最新迭代版本,训练流程与YOLOv8基本一致,仅替换了新的网络结构与预训练权重,如果有其他目标检测的数据集可以直接拿来用,从第3训练模型开始看,新手小白0基础建议一步一步跟着来,哪里看不懂的或者遇到哪有问题可以发到评论区交流~_yolov11 https://blog.csdn.net/qq_67105081/article/details/143402823?spm=1001.2014.3001.5502

如果遇到报错或者有疑问可以评论区交流,报错了先确定是按照我的教程配置的,仍然有问题再问。  关注微信公众号 快速联系我~

### 关于 Ultralytics 和 PyTorch 的版本兼容性 Ultralytics YOLOv8 对 PyTorch 版本的支持情况取决于其开发过程中所依赖的功能集以及测试覆盖范围。通常情况下,Ultralytics 推荐使用较新的 PyTorch 版本以获得最佳性能和支持[^1]。 #### 官方最低要求 根据官方文档说明,Python 需要至少 3.6 或更高版本,并且安装的所有依赖项需满足 `requirements.txt` 文件中的条件,其中包括 PyTorch >= 1.7[^2]。这意味着任何低于此版本的 PyTorch 可能无法正常工作。 #### 建议使用的 PyTorch 版本 为了减少潜在的兼容性问题,推荐尽可能采用最新的稳定版 PyTorch 来配合 Ultralytics 使用。如果项目中有特殊需求必须锁定某个具体版本,则应仔细查阅 Ultralytics 发布日志或 GitHub Issues 页面确认该组合是否已被验证通过。 #### 处理旧版本的情况 当不得不坚持使用像 PyTorch 1.12.0 这样的早期发行版时,可能遇到一些功能缺失或者行为不一致的现象。此时除了升级到更新版本外,还可以尝试手动调整部分代码逻辑来适应现有环境;另外也可以参考 torchvision 提供的历史标签页寻找匹配资源完成自定义编译过程从而缓解冲突状况[^3]。 #### 虚拟环境配置实例 对于希望构建专门用于 GPU 加速训练场景下的 Python 环境而言,在 Anaconda Prompt 下执行如下命令可以创建名为 "pytorch-gpu" 并指定 Python 主次号为 3.9 的新空间: ```bash conda create -n pytorch-gpu python=3.9 ``` 之后按照常规流程激活新建好的 session 同时加载必要的库文件即可继续后续操作步骤[^4]。
评论 532
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笑脸惹桃花

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值