多尺度是什么计算机视觉中 multi_SCALE

先给出定义吓死你们哈哈

多尺度,实际上就是对信号的 不同粒度 的采样 别急哈哈

粒度小,说明是一个很密集的采样,能看到更多更多的细节

而粒度粗 大 说明是一个很稀疏的采样,但是点与点之间隔得远了,就容易看到趋势了

 

通常在不同的尺度下我们可以观察到不同的特征,从而完成不同的任务。往下看好像有点感觉了吧

任务:判断图中是否有前景,那么12×8的图像尺度is enough。

任务: 识别图中的水果种类,那么64×48的尺度也能勉强完成。

任务: 识别后期合成该图像的景深,则需要更高分辨率的图像,比如640×480。

此处引用【AI不惑境】深度学习中的多尺度模型设计 - 知乎

我知道你很急,但是不要着急

先来认识一下DoG尺度空间构造

尺度空间(scale space)理论

自然界中的物体呈现出不同的形态,需要不同的尺度观测。

 

 从第一张图找江苏大学是不是有点困难

第二张图我直接放大,江苏大学有几个食堂都清清楚楚对不

而根据这个例子中,我们控制鼠标是地图放大,改变了尺度,来获取我们感兴趣的点。

计算机也是这样,不过它比较呆,需要用多尺度来认识以及寻找目标物体的最佳尺度

然后就可以去学习图像金字塔了

 

参考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东东要拼命

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值