第五章 矩阵的相似对角化

矩阵的相似对角化

5.1 特征值与特征向量

1.特征值与特征向量的概念

设A是n阶矩阵,如果存在数 λ 0 \lambda_0 λ0和n维非零列向量 α \alpha α使得等式
A α = λ 0 α A\alpha=\lambda_0\alpha Aα=λ0α

成立,则称 λ 0 \lambda_0 λ0为矩阵A的一个特征值, α \alpha α为矩阵A属于特征值 λ 0 \lambda_0 λ0的特征向量。

2.特征值与特征向量的求法

设A为n阶矩阵,关于变量 λ \lambda λ的n次多项式 ∣ λ E − A ∣ = 0 | \lambda E-A|=0 λEA=0称为矩阵A的特征方程。

由上述分析与定义知,n阶矩阵A的特征值恰是特征方程 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0的根。由于一元n次方程(在复数范围)恰好有n个根,所以任意一个n阶矩阵恰好有n个特征值(可能有重复)如果 λ 0 \lambda_0 λ0是矩阵A的特征值,齐次线性方程组 ( λ 0 E − A ) x = 0 (\lambda_0 E -A)x=0 (λ0EA)x=0的全部非零解就是矩阵A属于特征值 λ 0 \lambda_0 λ0的全部特征向量。

求矩阵的特征值的特征向量的计算步骤:

(1)计算矩阵A的特征多项式 f ( λ ) = ∣ λ E − A ∣ f(\lambda)=|\lambda E-A| f(λ)=λEA;

(2)求出特征方程 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0的全部根,它们就是矩阵A的全部特征值;

(3)对每一个特征值 λ 0 \lambda_0 λ0求出次线性方程 ( λ 0 E − A ) x = 0 基础解系 (\lambda_0E-A)x=0基础解系 (λ0EA)x=0基础解系

α 1 , α 2 , . . . α t , \alpha_1,\alpha_2,...\alpha_t, α1,α2,...αt,

则矩阵A属于特征值 λ 0 \lambda_0 λ0的全部特征向量为
k 1 α 1 + k 2 α 2 + . . . + k t α t , k_1\alpha_1+k_2\alpha_2+...+k_t\alpha_t, k1α1+k2α2+...+ktαt,

其中, k 1 , k 2 , . . . , k t k_1,k_2,...,k_t k1,k2,...,kt是任意一组不全为零的常数。

3.特征值与特征向量的性质

(1)若 λ 0 \lambda_0 λ0是矩阵A的一个特征值, φ ( x ) \varphi(x) φ(x)是一个一元m次多项式,则 φ ( λ 0 ) \varphi(\lambda_0) φ(λ0)就是矩阵 Φ ( A ) \varPhi(A) Φ(A)的一个特征值。

(2)设n阶矩阵 A = ( a i j ) m ∗ n A=(a_{ij})_{m*n} A=(aij)mn的全部特征值是 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn
λ 1 + λ 2 + . . . + λ n = a 11 + a 22 + . . . + a n n = t r ( A ) λ 1 λ 2 . . . λ n = ∣ A ∣ \lambda_1+\lambda_2+...+\lambda_n=a_{11}+a_{22}+...+a_{nn}=tr(A)\\ \lambda_1\lambda_2...\lambda_n=|A| λ1+λ2+...+λn=a11+a22+...+ann=tr(A)λ1λ2...λn=A
这里记号tr(A)表示矩阵A的迹,其定义为A主对角线上的所有元素的和。

(3)设 λ 1 , λ 2 , . . . , λ m \lambda_1,\lambda_2,...,\lambda_m λ1,λ2,...,λm是矩阵A互不相同的特征值,向量 α 1 , α 2 , . . . α m \alpha_1,\alpha_2,...\alpha_m α1,α2,...αm是矩阵A依次属于 λ 1 , λ 2 , . . . λ m \lambda_1,\lambda_2,...\lambda_m λ1,λ2,...λm的特征向量,则向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性无关。

5.2相似矩阵与矩阵的对角化

1.相似矩阵的概念

设A,B都是n阶矩阵,如果存在n阶可逆矩阵P使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则称矩阵A与B相似,记作 A ∽ B A\backsim B AB.

2.相似矩阵的性质

(1)矩阵的相似关系具用如下三条性质

  • 1 反身性: A ∽ A A\backsim A AA
  • 2 对称性:如果 A ∽ B A\backsim B AB,则 B ∽ A B\backsim A BA
  • 3 传递性:如果 A ∽ B , B ∽ C A \backsim B,B\backsim C AB,BC,则 A ∽ C A\backsim C AC

(2)相似矩阵有相同的特征多项式。

(3)相似矩阵有相同的特征值。

(4)相似的矩阵具有相同的特征值,但具有相同特征值的矩阵不一定相似,此外相似的矩阵还有相同的秩,相同的迹,相同的行列式。

(5)若 A ∽ B A\backsim B AB,则 k A ∽ k B , A T ∽ B T , A k ∽ B k , A − 1 ∽ B − 1 , A ∗ ∽ B ∗ , f ( A ) ∽ f ( B ) kA\backsim kB,A^T\backsim B^T,A^k\backsim B^k,A^{-1}\backsim B^{-1},A^*\backsim B^*,f(A)\backsim f(B) kAkB,ATBT,AkBk,A1B1,AB,f(A)f(B)

(6)若存在可逆矩阵P,使 P − 1 A P = B P^{-1}AP = B P1AP=B, ξ \xi ξ为A的属于A的属于特征值 λ \lambda λ的特征向量,则 λ \lambda λ也为B的特征值, P − 1 ξ P^{-1}\xi P1ξ对应的特征向量。

3.矩阵可以相似对角化的条件

设A为n阶矩阵,如果存在可逆矩阵P,使得 P − 1 A P P^{-1}AP P1AP为对角矩阵,称矩阵可以对角化,否则称矩阵A不能对角化。

(1)n阶矩阵A可以对角化的充分必要条件是A有n个线性无关的特征向量。

(2)如果n阶矩阵A有n个互不相同的特征值,则A一定可以对角化。

事实上,n阶矩阵A属于不同特征值的特征向量线性无关,所以此时矩阵A有n个线性无关的特征向量,从而可以对角化。

设A为n阶矩阵 λ 1 , λ 2 , . . . , λ s \lambda_1,\lambda_2,...,\lambda_s λ1,λ2,...,λs是特征方程 ∣ λ A − A ∣ = 0 |\lambda A-A|=0 λAA=0的全部不同的根,它们的重数依次为 n 1 , n 2 , . . . , n s ( n 1 + n 2 + . . . + n s = n ) n_1,n_2,...,n_s(n_1+n_2+...+n_s=n) n1,n2,...,ns(n1+n2+...+ns=n)这时有如下结论:

(3)n阶矩阵A可以对角化的充分必要条件是对特征值 λ i ( 1 ⪕ i ⪕ s ) \lambda_i(1\eqslantless i \eqslantless s) λi(1is)A有 n i n_i ni个属于特征值 λ i \lambda_i λi的线性无关的特征向量。

(4)若对某个 i ( 1 ⪕ i ⪕ s ) i(1\eqslantless i\eqslantless s) i(1is),矩阵A属于特征值 λ i \lambda_i λi的线性无关的特征向量少于 n i n_i ni个,则矩阵A不能对角化。

4.将矩阵化为相似对角矩阵的方法

判断矩阵A能否对角化,在能对角化时将A对角化的计算步骤如下:

(1)写出矩阵A的特征多项式 f ( λ ) = ∣ λ E − A ∣ f(\lambda)=|\lambda E-A| f(λ)=λEA,由特征方程 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0求出A的全部特征值;

(2)若对某个特征值 λ 0 \lambda_0 λ0方程组 ( λ 0 E − A ) x = 0 (\lambda_0 E-A)x=0 (λ0EA)x=0的基础解系中解向量的个数小于 λ 0 \lambda_0 λ0重数,则矩阵不能对角化。

(3)若对每个特征值 λ 1 \lambda_1 λ1,方程组 ( λ i E − A ) x = 0 (\lambda_i E-A)x=0 (λiEA)x=0的基础解系中解向量的个数都等 λ i \lambda_i λi的重数 n i n_i ni,则矩阵可以对角化,这时属于特征值 λ i \lambda_i λi的线性无关的特征向量个数为 n i n_i ni,且 n 1 + n 2 + . . . + n s = n n_1+n_2+...+n_s=n n1+n2+...+ns=n用这些特征向构成矩阵P,则P可逆,且有 P − 1 A P P^{-1}AP P1AP为对角矩阵A,其主对线上元素为矩阵A的特征,特征值的排序与P中特征向量的排序一致。

5.3实对称矩阵的对角化。

1.实对称矩阵特征值与特征向量的性质。
当n阶矩阵A为实矩阵时,其特征多项式 f ( λ ) = ∣ λ E − A ∣ f(\lambda)=|\lambda E-A| f(λ)=λEA为实系数多项式,但特征方程 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0的根,即矩阵A的特征值不一定是实数。而实对称矩阵的特征值一定是实数,并且一定可以对角化。

(1)实对称矩阵的特征值是实数。

(2)实对称矩阵属于不同特征值的特征向量一定是正交的。

(3)对任意的n阶实对称矩阵A,存在n阶正交矩阵Q,使得

Q − 1 A Q = ∣ λ 1 ,   ,   ,     , λ 2 ,   ,   . . .   ,   ,   , λ n ∣ Q^{-1}AQ=\left| \begin{matrix} \lambda_1,\ ,\ ,\ \\ \ ,\lambda_2,\ ,\ \\ ...\\ \ ,\ ,\ ,\lambda_n \end{matrix} \right| Q1AQ= λ1, , ,  ,λ2, , ... , , ,λn

这里 λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn是A的全部特征值.

  1. 用正交矩阵将实对称矩阵化为对角矩阵。

用正交矩阵将实对称矩阵对角化的步骤如下:

(1)求出实对称矩阵A的全部不同特征值 λ 1 , λ 2 , . . . , λ s \lambda_1,\lambda_2,...,\lambda_s λ1,λ2,...,λs

(2)对每一个 λ i \lambda_i λi(i=1,2,…,s)求出 ( λ i E − A ) = 0 (\lambda_i E-A)=0 (λiEA)=0

α i 1 , α i 2 , . . . α i n i \alpha_{i1},\alpha_{i2},...\alpha_{in_{i}} αi1,αi2,...αini

正交单位化之后(单根只需单位化)得到一个正交向量组

p i 1 , p i 2 , . . . , p i n i p_{i1},p_{i2},...,p_{in_{i}} pi1,pi2,...,pini

(3)令 Q = ( p 11 , . . p 1 n 1 , p 21 , . . . , p 2 n 2 , . . . , p s 1 , . . . , p s n s ) Q=(p_{11},..p_{1n_{1}},p_{21},...,p_{2n_{2}},...,p_{s1},...,p_{sn_{s}}) Q=(p11,..p1n1,p21,...,p2n2,...,ps1,...,psns),则Q为正交矩阵,且 Q − 1 A Q Q^-1AQ Q1AQ为对角矩阵,对角线上的元素为A的全部特征值,且特征值的排序与特征向量的排序相对应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值