离散化

目录

1.概念

2.例子

3.离散化的步骤

3.1排序

3.2去重

3.3重新赋值


1.概念

        离散化是把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。 通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。(百度百科)单纯的看概念可能会有点抽象,用例子来说明可能更易理解。

2.例子

        以二维空间为例,我们需要从左上角走到右下角,且只能向下或向右走,在尽可能拿更多星星的情况下达到右下角。我们从第一张图可以看到我们会走过许多没有星星的道路,这些路显然是无关紧要且浪费时间、空间的。我们就需要采用离散化将其转化为第二张图的效果,以便节省时间和空间。

3.离散化的步骤

3.1排序

        我们可以看到三颗星星的坐标分别为(1, 1),(1, 3),(2, 5)。创建一个数组vector<int>arr,把它们的坐标都压入数组,便有{1,1,1,3,2,5}。sort排序后便有{1,1,1,2,3,5}。排序的意义是去重中的unique函数只能对相邻的重复元素进行去重。

3.2去重

        在去重要用到STL的unique函数(具体可看链接),简单来讲,unique是将所有重复的数字留下一根独苗后都丢到数组的最后,并返回不重复序列的下一个位置指针。unique(arr.begin(), arr.end())后便有{1,1,1,2,3,5}到{1,2,3,5,1,1}的效果,并得到倒数第二个数的位置指针。用这个指针我们又可以得到{1,2,3,5}的大小。如下:

int num_size = unique(arr.begin(), arr.end()) - arr.begin();

3.3重新赋值

        在这要要用到STL的lower_bound函数(具体可看链接),简单来讲,lower_bound是在范围内(左闭右开)找到第一个不小于目标值的位置并返回指针。以(1,3)坐标为例,令x=1,y=3。如下:

int x, y;
x = lower_bound(arr.begin(), arr.begin() + num_size, x) - arr.begin();
y = lower_bound(arr.begin(), arr.begin() + num_size, y) - arr.begin();

显然x = 1的位置在arr.begin(),相减后x = 0;y = 3的位置在arr.begin() + 2,相减后y = 2。以此类推,便有(1,1)->(0,0),(1,3)->(0,2),(2,5)->(1,3)。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

厂里英才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值