✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介
一、背景介绍
随着科技的发展,电力系统的负荷预测越来越受到重视。准确的负荷预测可以帮助电力系统合理调度,提高电力系统的运行效率。而时间卷积神经网络(TCN)作为一种强大的深度学习模型,已经在许多领域取得了显著的成果。然而,TCN模型的训练过程中存在梯度消失和梯度爆炸等问题,影响了模型的性能。因此,如何优化TCN模型,提高其预测精度成为了一个亟待解决的问题。
二、樽海鞘优化算法SSA简介
樽海鞘优化算法(SSA)是一种基于樽海鞘群体行为的模拟优化算法。樽海鞘是一种具有高度社会性的生物,它们在觅食、繁殖和保护幼崽等方面表现出复杂的群体行为。SSA通过模拟樽海鞘的觅食、跟随和保护行为,实现对目标函数的优化。相较于传统的优化算法,SSA具有更强的全局搜索能力和更快的收敛速度。
三、基于SSA优化TCN的负荷数据回归预测方法
本文提出了一种基于SSA优化TCN的负荷数据回归预测方法。具体步骤如下:
1. 数据预处理:首先对原始负荷数据进行归一化处理,消除数据之间的量纲影响。然后,将归一化后的数据划分为训练集和测试集。
2. TCN模型构建:搭建一个多层的时间卷积神经网络模型,输入为归一化后的负荷数据,输出为预测的负荷值。
3. SSA优化:将TCN模型的参数作为樽海鞘个体的位置,通过模拟樽海鞘的觅食、跟随和保护行为,实现对TCN模型参数的优化。
4. 模型训练与测试:使用优化后的TCN模型在训练集上进行训练,然后在测试集上进行测试,评估模型的预测性能
绍
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类