【多变量输入单步预测】基于蜣螂优化算法DBO-CNN-BiLSTM-Attention的风电功率预测研究Matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

摘要: 风电功率预测对于提高电力系统稳定性和可靠性至关重要。本文提出了一种基于蜣螂优化算法 (DBO) 优化的卷积神经网络 (CNN)、双向长短期记忆网络 (BiLSTM) 和注意力机制 (Attention) 的风电功率预测模型,即 DBO-CNN-BiLSTM-Attention 模型。该模型利用 DBO 算法对模型参数进行优化,CNN 提取多变量输入数据的时空特征,BiLSTM 捕捉时间序列数据的长时依赖关系,Attention 机制则重点关注与目标变量相关的关键特征。通过实证研究,证明了该模型在风电功率预测方面具有优异的性能。

关键词: 风电功率预测;蜣螂优化算法;卷积神经网络;双向长短期记忆网络;注意力机制

1. 引言

随着全球能源结构调整和可再生能源利用率的提升,风电作为一种清洁、可再生能源,在电力系统中扮演着越来越重要的角色。然而,风电功率具有高度的随机性和间歇性,给电力系统稳定性和可靠性带来挑战。因此,准确预测风电功率至关重要,能够有效地提高电力系统调度效率、降低运营成本、并提高风电场接入的稳定性。

近年来,深度学习技术在风电功率预测领域取得了显著进展。其中,卷积神经网络 (CNN) 能够有效提取时空特征,双向长短期记忆网络 (BiLSTM) 可以捕捉时间序列数据的长时依赖关系,注意力机制 (Attention) 则可以重点关注与目标变量相关的关键特征。这些技术在风电功率预测方面展现出良好的应用前景。

然而,传统的风电功率预测模型往往面临以下问题:

  • 特征提取能力不足: 传统的模型难以有效提取多变量输入数据中复杂的时空特征。

  • 时间依赖性不足: 传统的模型难以捕捉时间序列数据中的长时依赖关系。

  • 参数优化问题: 传统的模型参数优化方法效率低下,难以找到全局最优解。

为了解决上述问题,本文提出了一种基于蜣螂优化算法 (DBO) 优化的 CNN-BiLSTM-Attention 风电功率预测模型。该模型结合了 DBO 算法的全局搜索能力、CNN 的特征提取能力、BiLSTM 的时间依赖关系建模能力以及 Attention 机制的选择性关注能力,能够有效地提高风电功率预测精度。

2. 模型结构

DBO-CNN-BiLSTM-Attention 模型主要由以下几个部分组成:

2.1 数据预处理

首先对原始数据进行预处理,包括数据清洗、归一化、特征提取等步骤。该步骤旨在消除数据中的异常值和噪声,并将数据范围缩放到 0 到 1 之间,以提高模型的训练效率和稳定性。

2.2 卷积神经网络 (CNN)

CNN 是一种前馈神经网络,其核心思想是通过卷积操作提取输入数据的特征信息。本文采用多层 CNN 结构,每一层都包含卷积核、池化层和激活函数,用于提取不同层次的特征信息。

2.3 双向长短期记忆网络 (BiLSTM)

BiLSTM 是一种递归神经网络,它可以捕捉时间序列数据中的长时依赖关系。BiLSTM 同时考虑了时间序列数据的过去和未来信息,能够更好地建模时间序列数据的动态特性。

2.4 注意力机制 (Attention)

Attention 机制是一种能够根据输入数据的不同特征赋予不同权重的机制,它可以帮助模型聚焦于与目标变量相关的关键特征,并忽略无关的特征信息。本文采用注意力机制,以提高模型对时间序列数据的关注度,从而提升预测精度。

2.5 蜣螂优化算法 (DBO)

DBO 算法是一种基于群体智能的优化算法,其灵感来源于蜣螂在寻找食物和寻找伴侣时的行为。DBO 算法能够有效地搜索全局最优解,并在模型参数优化方面具有独特的优势。

3. 模型训练与评估

模型训练采用反向传播算法,通过最小化损失函数来优化模型参数。模型评估则通过评估指标,例如均方根误差 (RMSE) 和平均绝对误差 (MAE),来衡量模型的预测精度。

4. 实证研究

本文使用某风电场采集的实际风电功率数据进行实证研究,并将 DBO-CNN-BiLSTM-Attention 模型与其他预测模型进行比较,验证其优越性。

4.1 数据集

数据集包含 2018 年 1 月至 2019 年 12 月的风电功率数据,并包含多个影响风电功率的因素,例如风速、气温、气压等。

4.2 实验结果

实验结果表明,DBO-CNN-BiLSTM-Attention 模型在风电功率预测方面具有良好的性能。与其他预测模型相比,该模型的 RMSE 和 MAE 均显著降低,证明了该模型能够有效地提高风电功率预测精度。

5. 结论

本文提出了一种基于蜣螂优化算法的 CNN-BiLSTM-Attention 风电功率预测模型,并通过实证研究验证了该模型的有效性。该模型能够有效地提取多变量输入数据的时空特征,捕捉时间序列数据的长时依赖关系,并重点关注与目标变量相关的关键特征,从而提高风电功率预测精度。未来,可以进一步探索其他优化算法、神经网络结构以及数据处理方法,以进一步提升风电功率预测模型的性能。

⛳️ 运行结果

正在上传…重新上传取消

正在上传…重新上传取消

正在上传…重新上传取消

正在上传…重新上传取消

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值