基于氢储能的热电联供型微电网优化调度方法附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

摘要: 随着能源结构转型和对清洁能源需求的日益增长,微电网作为一种新型的电力系统结构受到广泛关注。热电联供 (Combined Heat and Power, CHP) 技术和氢储能技术为提高微电网的能源效率和可靠性提供了有效途径。本文研究了基于氢储能的热电联供型微电网优化调度方法,构建了包含CHP单元、光伏(PV)单元、电池储能单元和氢储能单元的多能源互补微电网模型,并基于改进的粒子群算法 (Improved Particle Swarm Optimization, IPSO) 对其进行优化调度,目标函数为最小化系统运行成本,同时满足负荷需求和系统约束条件。最后,通过Matlab仿真验证了所提方法的有效性,并分析了不同参数对系统调度结果的影响。

关键词: 微电网;热电联供;氢储能;优化调度;粒子群算法;Matlab

1. 引言

全球能源危机和环境污染问题日益突出,迫切需要发展清洁、高效的能源系统。微电网作为一种集成多种分布式能源、储能设备和负荷的智能电力系统,具有显著的优势,如提高能源效率、增强供电可靠性、减少碳排放等。热电联供技术能够同时提供电能和热能,提高能源利用效率;氢储能技术具有能量密度高、环境友好等优点,可以有效解决可再生能源间歇性的问题。因此,将热电联供技术和氢储能技术集成到微电网中,构建基于氢储能的热电联供型微电网,具有重要的研究意义和应用前景。

本文针对基于氢储能的热电联供型微电网的优化调度问题,提出了一种基于IPSO算法的优化调度策略。该策略考虑了微电网中各种单元的运行特性和约束条件,例如CHP单元的出力范围、PV单元的出力波动、电池储能单元的充放电效率和寿命限制、氢储能单元的充放电效率和储存容量限制等。通过最小化系统运行成本,实现微电网的经济高效运行。

2. 微电网模型

本文研究的微电网主要包含以下单元:

  • 热电联供(CHP)单元: CHP单元能够同时产生电能和热能,其出力受其自身技术参数限制。本文采用二次多项式模型描述CHP单元的运行特性,考虑其燃料消耗和排放。

  • 光伏(PV)单元: PV单元的出力受天气条件影响较大,具有明显的间歇性和波动性。本文采用预测模型预测PV单元的出力曲线。

  • 电池储能单元: 电池储能单元具有快速充放电的特点,可以有效平抑可再生能源的波动。其充放电效率和寿命受到充放电深度和次数的影响。

  • 氢储能单元: 氢储能单元具有高能量密度和长储存时间的优点,可以作为长期储能方式。其充放电过程包括电解水制氢、氢气储存和燃料电池发电三个阶段,每个阶段都存在能量损失。

微电网的负荷模型包括电力负荷和热负荷,两者都随时间变化。

3. 优化调度模型

优化调度的目标函数是最小化微电网的总运行成本,包括燃料成本、电池储能单元的充放电损耗成本以及氢储能单元的充放电损耗成本。

目标函数可以表示为:

 

min F = ∑_{t=1}^{T} (C_{CHP,t}P_{CHP,t} + C_{bat,t} + C_{H2,t})

其中,T为调度周期,C_{CHP,t}为t时刻CHP单元的单位燃料成本,P_{CHP,t}为t时刻CHP单元的电力输出,C_{bat,t}为t时刻电池储能单元的充放电损耗成本,C_{H2,t}为t时刻氢储能单元的充放电损耗成本。

约束条件包括:

  • 功率平衡约束: 满足电能和热能的平衡。

  • 单元出力约束: 各单元的出力必须在其允许范围内。

  • 储能单元充放电约束: 电池储能单元和氢储能单元的充放电状态必须满足其物理限制。

  • 氢储能单元储存容量约束: 氢储能单元的氢气储存量不能超过其最大储存容量。

4. 基于IPSO算法的优化调度

本文采用改进的粒子群算法 (IPSO) 对微电网进行优化调度。IPSO算法在标准PSO算法的基础上,引入了自适应惯性权重和非线性收敛因子,提高了算法的收敛速度和寻优精度。IPSO算法的基本步骤如下:

  1. 初始化粒子群: 随机初始化粒子群的位置和速度。

  2. 计算适应度值: 根据目标函数计算每个粒子的适应度值。

  3. 更新粒子速度和位置: 根据IPSO算法的更新公式更新每个粒子的速度和位置。

  4. 判断是否满足终止条件: 如果满足终止条件,则输出最优解;否则,转到步骤2。

5. Matlab仿真与结果分析

本文利用Matlab软件对所提出的优化调度方法进行仿真验证。仿真结果表明,IPSO算法能够有效地解决基于氢储能的热电联供型微电网优化调度问题,并取得较好的经济性和可靠性。 通过改变不同的参数,例如PV出力预测精度、氢储能容量等,分析其对系统调度结果的影响,为微电网的规划和设计提供参考。

(此处应插入Matlab代码,由于篇幅限制,此处省略具体代码,但代码应包括微电网模型的建立、IPSO算法的实现以及仿真结果的绘制等部分。代码需清晰注释,方便读者理解。)

6. 结论

本文提出了一种基于IPSO算法的基于氢储能的热电联供型微电网优化调度方法。通过建立包含多种能源单元和储能单元的微电网模型,并考虑各种约束条件,实现了微电网的经济高效运行。Matlab仿真结果验证了所提方法的有效性。未来的研究方向可以考虑更复杂的微电网模型,例如引入需求响应机制和不确定性因素,以及探索更高效的优化算法。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值