✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
水下图像由于受到光线吸收和散射的影响,常常呈现出对比度低、色彩失真、细节模糊等问题,严重影响了水下环境的观测、海洋资源的勘探以及水下工程的开展。因此,水下图像增强技术一直是研究的热点,其目的是改善水下图像的视觉质量,提高图像信息的可读性和可用性。在众多的增强方法中,图像融合技术凭借其能有效整合多种图像信息,显著提升增强效果的优势,受到了广泛关注。本文将围绕水下图像融合增强展开讨论,梳理其研究进展,并展望未来发展方向。
一、水下图像退化模型与增强挑战
在深入讨论水下图像融合增强之前,有必要了解水下图像的退化机理。光在水中传播时,会受到两种主要因素的影响:吸收和散射。吸收导致光线能量衰减,不同波长的光吸收率不同,红色光被吸收得更快,导致图像整体偏蓝绿色。散射则使光线偏离原本的传播方向,包括前向散射和后向散射。前向散射使图像模糊,后向散射则产生光晕效应,进一步降低图像的对比度。这些因素共同作用,使得水下图像呈现出色彩失真、对比度低、细节模糊等问题。
因此,水下图像增强的挑战在于如何有效地补偿光线的吸收和散射效应,恢复图像的真实色彩和细节信息。传统的图像增强方法,如直方图均衡化、对比度拉伸等,虽然能在一定程度上改善图像的视觉效果,但往往会引入噪声,并可能加剧色彩失真问题。基于物理模型的增强方法,如暗通道先验算法,通过估计水下图像的传输图和背景光,可以有效恢复图像的色彩和对比度。然而,这些方法对模型的准确性要求较高,且计算复杂度较高,难以满足实时性要求。
二、水下图像融合增强方法概述
水下图像融合增强技术旨在将多种图像信息整合在一起,弥补单一方法的不足,从而获得更好的增强效果。根据融合的方式和策略,可以将水下图像融合增强方法大致分为以下几类:
-
基于多源图像的融合: 这种方法利用不同传感器获取的多源图像进行融合,例如,将可见光图像和红外图像融合,或者将不同视角拍摄的图像进行融合。通过融合不同类型的信息,可以获得更全面的场景信息,从而更好地进行水下图像增强。然而,这种方法需要额外的传感器设备,成本较高,且需要进行图像配准等预处理步骤。
-
基于多特征的融合: 这种方法从单一图像中提取多种特征,例如颜色特征、纹理特征、边缘特征等,然后将这些特征进行融合,用于增强图像的细节和对比度。常用的融合策略包括加权平均、最大值选择、支持向量机等。这种方法无需额外的传感器设备,实现简单,但效果受限于单一图像的信息质量。
-
基于多算法的融合: 这种方法将多种图像增强算法的结果进行融合,例如,将直方图均衡化和暗通道先验算法的结果进行融合,或者将不同的色彩校正算法的结果进行融合。通过融合不同算法的优势,可以弥补单一算法的不足,从而获得更好的增强效果。常用的融合策略包括加权平均、决策融合等。这种方法是目前研究的主流方向,具有较强的灵活性和适应性。
-
基于多尺度的融合: 这种方法将图像分解成多个尺度,在不同的尺度上进行不同的增强处理,然后将处理后的图像进行融合。常用的多尺度分解方法包括小波变换、拉普拉斯金字塔等。这种方法可以有效地处理不同尺度的图像信息,从而更好地增强图像的细节和对比度。
三、水下图像融合增强的关键技术
在上述各类融合方法中,关键技术包括图像质量评估、图像配准(对于多源图像融合)、特征提取与选择、融合策略设计以及算法优化等。
-
图像质量评估: 图像质量评估是水下图像融合增强的前提。通过对不同图像的质量进行评估,可以为后续的融合策略提供参考。常用的图像质量评估指标包括均值、方差、熵、信息熵、边缘强度等。更先进的图像质量评估方法,如基于机器学习的图像质量评估模型,可以更好地反映图像的视觉质量。
-
图像配准: 对于多源图像融合,图像配准是必不可少的步骤。图像配准是将不同图像在空间上进行对齐,以便进行后续的融合。常用的图像配准方法包括基于特征的配准、基于区域的配准、基于相位的配准等。
-
特征提取与选择: 对于多特征融合,特征提取和选择是关键步骤。通过提取图像的多种特征,可以获得更全面的图像信息。然而,并非所有特征都对增强有帮助,因此需要进行特征选择,选择对增强效果影响最大的特征。常用的特征提取方法包括颜色直方图、灰度共生矩阵、局部二值模式等。特征选择方法包括基于信息增益的特征选择、基于相关性的特征选择等。
-
融合策略设计: 融合策略是水下图像融合增强的核心。不同的融合策略对增强效果的影响很大。常用的融合策略包括加权平均、最大值选择、决策融合等。加权平均是一种简单有效的融合策略,但需要确定每个图像或特征的权重。最大值选择可以有效地突出图像中的细节信息,但可能会引入噪声。决策融合可以根据不同的条件选择不同的融合结果,具有较强的灵活性。
-
算法优化: 水下图像融合增强算法的计算复杂度通常较高,难以满足实时性要求。因此,需要对算法进行优化,提高算法的效率。常用的算法优化方法包括并行计算、硬件加速等。
四、研究进展与案例分析
近年来,水下图像融合增强技术取得了显著的进展。研究者们提出了许多新的融合算法和策略,并将其应用于各种水下场景。
-
基于深度学习的融合: 深度学习在图像处理领域取得了巨大的成功。越来越多的研究者将深度学习应用于水下图像融合增强。例如,利用卷积神经网络(CNN)提取图像的特征,然后利用融合网络将不同特征进行融合。深度学习方法可以自动学习图像的特征,并能有效地处理复杂的图像信息。然而,深度学习方法需要大量的训练数据,且计算复杂度较高。
-
基于生成对抗网络(GAN)的融合: GAN是一种生成模型,可以生成逼真的图像。研究者们利用GAN进行水下图像融合增强,例如,利用生成器生成增强后的图像,利用判别器判断生成的图像是否逼真。GAN方法可以有效地恢复图像的细节信息,并能生成具有真实感的图像。然而,GAN方法的训练过程比较困难,容易出现模式崩溃等问题。
-
基于Transformer的融合: Transformer模型在自然语言处理领域取得了巨大的成功。最近,研究者们开始将Transformer模型应用于图像处理领域。Transformer模型可以有效地捕捉图像的全局信息,并能处理长距离的依赖关系。研究者们利用Transformer模型进行水下图像融合增强,取得了良好的效果。
以下是一些具体的案例分析:
-
案例一: 一种基于暗通道先验和色彩平衡的水下图像融合增强算法。该算法首先利用暗通道先验算法估计水下图像的传输图和背景光,然后利用色彩平衡算法对图像进行色彩校正。最后,将暗通道先验算法和色彩平衡算法的结果进行加权平均,得到增强后的图像。该算法可以有效地恢复图像的色彩和对比度,并能减少噪声。
-
案例二: 一种基于卷积神经网络的水下图像融合增强算法。该算法利用卷积神经网络提取图像的特征,然后利用融合网络将不同特征进行融合。该算法可以自动学习图像的特征,并能有效地处理复杂的图像信息。实验结果表明,该算法可以显著提高水下图像的视觉质量。
-
案例三: 一种基于生成对抗网络的水下图像融合增强算法。该算法利用生成器生成增强后的图像,利用判别器判断生成的图像是否逼真。该算法可以有效地恢复图像的细节信息,并能生成具有真实感的图像。实验结果表明,该算法可以显著提高水下图像的清晰度和色彩饱和度。
五、未来发展方向展望
尽管水下图像融合增强技术已经取得了显著的进展,但仍然存在一些挑战需要解决。未来发展方向主要包括:
-
更高效的融合策略: 如何设计更高效的融合策略,充分利用不同图像的信息,是未来研究的重点。可以考虑引入更复杂的融合模型,例如,基于决策理论的融合模型、基于强化学习的融合模型等。
-
更鲁棒的算法: 水下环境复杂多变,算法的鲁棒性是关键。需要研究更鲁棒的算法,能够适应不同的水下环境和图像质量。可以考虑引入自适应的参数调整机制,根据不同的水下环境自动调整算法的参数。
-
更快速的算法: 水下图像的实时处理是许多应用的需求。需要研究更快速的算法,能够满足实时性要求。可以考虑利用并行计算、硬件加速等技术,提高算法的效率。
-
更智能的算法: 深度学习在图像处理领域取得了巨大的成功。未来,可以进一步研究基于深度学习的水下图像融合增强算法,例如,利用生成对抗网络生成更逼真的图像,利用Transformer模型捕捉图像的全局信息。
-
更全面的评估指标: 如何对水下图像的增强效果进行更全面的评估,是一个重要的研究方向。可以考虑引入更多的主观和客观评估指标,更准确地反映图像的视觉质量。
-
与其他技术的结合: 水下图像融合增强技术可以与其他技术相结合,例如,水下图像分割、水下目标检测等,从而实现更复杂的水下应用。
⛳️ 运行结果
🔗 参考文献
[1] 张兆礼,赵春晖,梅晓丹.现代图像处理技术及Matlab实现[M].人民邮电出版社,2001.
[2] 王剑平,张捷.小波变换在数字图像处理中的应用[J].现代电子技术, 2011, 34(1):4.DOI:10.3969/j.issn.1004-373X.2011.01.028.
[3] 兰红,田进,李淑芝,等.基于Matlab GUI的图像处理平台设计[J].江西理工大学学报, 2014(3):79-84.DOI:10.13265/j.cnki.jxlgdxxb.2014.03.015.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇