✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源危机日益凸显和环境保护压力不断增大,以化石能源为主体的传统能源系统正面临着深刻变革。构建以新能源为主体的新型电力系统,整合多元能源形式,提升能源利用效率,实现能源的可持续发展,已成为全球能源转型的重要方向。综合能源系统(Integrated Energy System, IES)作为将电、热、冷、气等多种能源形式耦合集成的能源系统,通过协调优化不同能源载荷之间的关系,能够显著提高能源系统的灵活性、可靠性和经济性。在多主体参与的复杂能源市场环境下,如何有效协调不同主体的利益诉求,实现整体系统的最优运行,成为IES调度面临的关键挑战。
传统的IES优化调度往往采用集中式或简单的分散式策略。集中式策略虽然能够实现全局最优,但需要强大的信息交互和计算能力,且难以保护各主体的隐私。简单的分散式策略则可能导致局部最优,缺乏全局协调性。此外,随着用户侧主动性增强,需求响应(Demand Response, DR)作为一种重要的市场机制,能够有效平抑供需波动,提高系统运行的灵活性。而多主体之间的电能交互,尤其是在分布式能源大量接入的情况下,也日益频繁,对传统的调度模式提出了新的要求。因此,研究计及需求响应和电能交互的多主体综合能源系统主从博弈优化调度策略,对于提升系统运行效率和市场公平性具有重要意义。
多主体综合能源系统的内涵与挑战
多主体综合能源系统并非简单地将不同能源子系统堆叠,而是通过能源枢纽(Energy Hub)等技术手段,实现不同能源之间的转换、储存和传输,形成有机耦合的网络。系统中的主体可能包括上游的发电企业(如传统火电厂、风力发电场、光伏电站)、中游的能源运营商(如配电公司、燃气公司)、下游的用户(如工业用户、商业用户、居民用户)以及可能存在的储能运营商、充电站等。每个主体都具有自身的能源特性、运行约束和经济目标。
在这样的多主体环境下,IES的优化调度面临诸多挑战:
- 利益冲突与协调:
不同主体具有不同的经济目标,例如发电企业追求发电利润最大化,用户追求能源成本最小化,能源运营商则可能关注系统可靠性、经济性和环境保护等多重目标。如何协调这些相互冲突的利益,实现帕累托最优或满足特定公平性原则,是核心问题。
- 信息不对称与隐私保护:
各主体掌握的信息可能存在差异,例如用户的实际需求、发电企业的运行成本等。调度策略需要考虑信息不对称的影响,并在信息交互过程中保护各主体的商业隐私。
- 动态性与不确定性:
可再生能源的出力波动性、用户需求的不确定性以及市场价格的波动性,都使得IES运行具有高度动态性和不确定性。调度策略需要具备对这些动态和不确定性的应对能力。
- 耦合约束与复杂性:
不同能源形式之间的转换、储存和传输存在复杂的物理约束,例如能量守恒、设备容量限制、管网压力限制等。这些耦合约束增加了调度问题的复杂性。
- 需求响应的建模与实施:
用户参与需求响应的意愿、方式以及对系统运行的影响需要准确建模。同时,有效的需求响应激励机制和实施方案也是关键。
- 电能交互的模式与影响:
多主体之间的电能交互可能包括购电、售电、跨区域传输等多种模式。如何优化电能交互的流量和方向,降低系统运行成本,提高能源利用效率,需要深入研究。
博弈论在多主体综合能源系统调度中的应用
博弈论作为研究具有相互依存关系决策主体的理性决策行为的数学工具,为解决多主体能源系统的协调问题提供了有效的框架。根据主体之间的决策顺序和信息结构,可以将博弈论应用于IES调度的不同场景。
- 非合作博弈:
当各主体独立做出决策,且不进行事先协商时,可以采用非合作博弈模型。例如,多个微网之间的能量交换可以建模为非合作博弈,每个微网旨在最大化自身利润,通过调整购售电策略相互影响。然而,非合作博弈的结果可能并非全局最优,甚至可能出现恶性竞争。
- 合作博弈:
当主体之间可以进行协商并形成联盟,共同追求整体利益最大化时,可以采用合作博弈模型。例如,多个IES运营商可以组成联盟,共同规划能源生产和分配,从而降低整体运营成本。合作博弈的关键在于如何合理分配合作收益,保证联盟的稳定性。
- Stackelberg博弈(主从博弈):
当系统中存在具有领导地位的主体和具有跟随地位的主体时,可以采用Stackelberg博弈模型。领导者先做出决策,跟随者根据领导者的决策做出最优响应。这种模型非常适合描述电力市场中的电网运营商与用户、发电企业之间的关系。电网运营商作为领导者,可以制定电价、调度计划等,用户和发电企业作为跟随者,根据电价和调度计划调整自身行为。
主从博弈在计及需求响应和电能交互的IES调度中的应用
在计及需求响应和电能交互的多主体IES中,主从博弈模型具有独特的优势。可以将具有全局协调能力的能源运营商或电网公司视为领导者(主),而各个具有独立决策能力的IES子系统、大型工业用户、售电公司等视为跟随者(从)。
领导者(主)的角色与决策: 领导者通常负责制定整体的调度计划、能源价格信号、需求响应激励机制以及协调多主体之间的电能交互策略。其目标可能是系统运行成本最小化、可靠性最大化、可再生能源消纳最大化等。领导者的决策需要考虑跟随者的最优响应。
跟随者(从)的角色与决策: 跟随者根据领导者的决策,调整自身的能源生产、消费、储存和交互策略。例如,IES子系统可以根据电价信号调整内部能源分配和对外购售电量;用户可以根据需求响应激励调整用电负荷。跟随者的目标通常是自身运行成本最小化或利润最大化。
需求响应的建模与博弈: 需求响应可以在主从博弈中以多种方式体现。领导者可以设计差异化的电价策略或提供直接的经济激励,引导用户调整用电行为。用户作为跟随者,根据这些激励,调整其可调节负荷、可转移负荷或可削减负荷,以降低自身能源成本。这种互动过程可以建模为Stackelberg博弈的下层问题,用户的最优响应函数将作为领导者决策的约束条件。
电能交互的建模与博弈: 多主体之间的电能交互是IES的重要特征。在主从博弈框架下,领导者可以规划整体的电网潮流和交易计划,而跟随者则根据领导者的计划和自身情况决定购售电量。例如,多个IES子系统之间可以进行点对点或通过电网平台进行电能交易。这种交易行为也可以纳入下层问题进行建模,各子系统根据价格信号和自身能源状况进行最优的电能交互。领导者可以通过制定合理的交易规则或电价机制来影响电能交互。
优化调度策略的构建: 计及需求响应和电能交互的多主体IES主从博弈优化调度策略通常采用双层规划模型来表示。
- 上层问题(领导者问题):
领导者以自身目标函数(如系统总成本最小化)为优化目标,决策变量包括整体调度计划、能源价格或激励机制等。上层问题的约束条件包括系统运行约束、设备容量限制以及下层问题的最优响应函数。
- 下层问题(跟随者问题):
每个跟随者以自身目标函数(如运行成本最小化)为优化目标,根据领导者的决策,调整自身的能源生产、消费、储存和交互策略。下层问题的最优解(即跟随者的最优响应)是关于领导者决策变量的函数。
求解双层规划问题通常比较复杂,常用的方法包括:
- KKT条件转化:
将下层问题转化为其KKT(Karush-Kuhn-Tucker)最优性条件,然后将其作为约束条件加入上层问题,从而将双层规划问题转化为单层混合整数线性规划或非线性规划问题进行求解。
- 迭代算法:
领导者和跟随者交替进行优化。领导者先做出决策,然后跟随者根据领导者的决策进行优化并反馈最优响应,领导者根据反馈调整决策,如此迭代直至收敛。
优化调度策略的优势与潜在问题
计及需求响应和电能交互的多主体IES主从博弈优化调度策略具有以下优势:
- 提高系统运行效率:
通过协调各主体的行为,优化能源资源的配置,降低系统运行成本。
- 增强系统灵活性:
需求响应的引入能够平抑供需波动,提高系统对不确定性的应对能力。
- 促进可再生能源消纳:
通过合理的调度和电价机制,引导用户在可再生能源出力充足时增加用电,提高可再生能源的利用率。
- 提升市场公平性:
主从博弈框架能够在一定程度上体现不同主体的地位和影响力,并通过合理的规则设计来保障市场公平。
- 保护主体隐私:
相比于集中式调度,主从博弈可以在一定程度上减少信息的完全共享,有利于保护各主体的商业隐私。
然而,该策略也存在一些潜在问题:
- 模型的复杂性:
双层规划模型和多主体交互的复杂性使得模型构建和求解难度较大。
- 信息交互的需求:
虽然相比集中式调度减少了信息共享,但主从之间仍然需要进行必要的信息交互,信息传输的可靠性和实时性是关键。
- 领导者权力集中:
领导者在决策过程中具有主导地位,其决策可能对跟随者的利益产生较大影响,需要设计合理的机制来约束领导者的行为。
- 跟随者理性假设:
博弈论假设主体是完全理性的,但在实际中,用户的行为可能受到非理性因素的影响,这会影响模型预测的准确性。
- 收敛性问题:
迭代算法的收敛性取决于问题的性质和算法的选择,可能存在不收敛或收敛速度慢的问题。
未来研究方向
针对上述挑战,未来的研究可以从以下几个方面展开:
- 多层主从博弈:
在更复杂的系统中,可能存在多个层级的主从关系,例如电网公司-区域能源运营商-用户。研究多层主从博弈模型及其求解算法。
- 动态与随机博弈:
考虑系统运行的动态性和不确定性,研究动态博弈和随机博弈在IES调度中的应用。
- 非理性行为的建模:
结合行为经济学和机器学习方法,对用户的非理性行为进行建模,提高需求响应预测的准确性。
- 激励机制设计:
设计更精细化、个性化的需求响应激励机制,提高用户参与的积极性。
- 智能合约与区块链:
利用智能合约和区块链技术,构建去中心化的电能交易平台,实现安全、高效、可信的多主体电能交互。
- 数据驱动与强化学习:
结合数据驱动方法和强化学习技术,提高调度策略对系统动态性和不确定性的适应能力。
- 鲁棒优化与不确定性:
考虑可再生能源出力、负荷需求等不确定性因素,采用鲁棒优化方法设计具有鲁棒性的调度策略。
- 隐私保护技术:
研究差分隐私、同态加密等技术在IES信息交互中的应用,进一步保护各主体的隐私。
结论
计及需求响应和电能交互的多主体综合能源系统主从博弈优化调度策略为解决复杂能源市场环境下的IES调度问题提供了新的思路。通过将系统主体划分为领导者和跟随者,利用双层规划模型描述其相互作用和决策过程,该策略能够有效地协调不同主体的利益,提高系统运行效率和灵活性。尽管存在模型复杂性、信息交互需求等挑战,但未来的研究可以通过引入更先进的博弈理论、优化算法和信息技术,不断完善和优化该策略,为构建高效、可靠、可持续的新型能源系统提供理论支撑和技术保障。随着能源市场化改革的深入和信息技术的快速发展,主从博弈理论在多主体能源系统调度中的应用前景将更加广阔。
⛳️ 运行结果
🔗 参考文献
[1] 杨皖昊.基于博弈论的电动汽车充电路径优化及充电站选址研究[D].上海电机学院,2021.
[2] 张瑞芳,电气工程.基于主从博弈和混合碳政策的园区综合能源系统低碳经济调度[D].东北电力大学[2025-04-29].
[3] 赵雅洁,薛田良,张磊,等.考虑风光不确定和阶梯式需求响应的园区综合能源系统博弈优化运行策略[J].[2025-04-29].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇