✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
移动自组网(MANET)是一种无基础设施的自组织无线网络,具有动态拓扑、分布式控制和资源受限等特点,在军事通信、应急救援和车载网络等领域具有广泛的应用前景。然而,MANET的开放性和无中心特性使其极易受到各种安全威胁,其中路由安全问题尤为突出。恶意节点可以通过伪造路由信息、篡改路由表等方式发起路由攻击,严重影响网络的可用性、可靠性和性能。传统的基于密码学或信任管理的路由安全方案在MANET环境中存在计算开销大、密钥管理困难、信任建立复杂等问题。近年来,机器学习技术在网络安全领域展现出强大的潜力,特别是多层感知神经网络(MLP)作为一种强大的非线性建模工具,在异常检测和模式识别等方面取得了显著成果。本文深入探讨了利用MLP在MANET中进行路由验证的可行性,详细阐述了基于MLP的路由验证系统架构、特征提取、模型训练和验证流程,并分析了其潜在优势和挑战。通过将路由行为转化为可量化的特征向量,并利用MLP的分类能力,可以有效地识别恶意路由行为,提升MANET的路由安全性。
引言
移动自组网(MANET)是一种由一组具有无线通信能力的移动节点组成的自组织网络。与传统基础设施网络不同,MANET没有固定的基站或中心控制点,节点之间通过多跳方式进行通信。这种无基础设施的特性赋予了MANET极大的灵活性和部署便捷性,使其在各种突发事件和特殊环境下具有独特的优势。然而,MANET的开放性也带来了严峻的安全挑战。由于节点可以随时加入或离开网络,并且缺乏中心化的管理和认证机制,恶意节点很容易潜入网络并实施各种攻击。
路由协议是MANET正常运行的核心,负责发现和维护节点之间的通信路径。MANET中常用的路由协议,如AODV、DSR和OLSR等,大多基于信任或协作假设,并没有内置强大的安全机制来抵御路由攻击。常见的路由攻击包括:
- 黑洞攻击(Blackhole Attack):
恶意节点声称拥有到达目的节点的最佳路径,并丢弃所有经过它的数据包。
- 蠕虫洞攻击(Wormhole Attack):
两个或多个恶意节点通过低延迟的“带外”信道连接,将网络流量从一个位置转发到另一个位置,从而绕过正常的路由路径。
- 灰色洞攻击(Grayhole Attack):
恶意节点有选择地丢弃数据包,而不是全部丢弃,更难以检测。
- 伪造路由信息攻击(Route Impersonation Attack):
恶意节点伪造路由更新、路由请求或路由应答等信息,欺骗其他节点建立错误的路由。
这些路由攻击能够严重破坏MANET的连通性、数据传输效率和可靠性,甚至导致网络瘫痪。因此,研究高效可靠的MANET路由安全机制至关重要。
传统的路由安全方案主要依赖于密码学方法,例如数字签名、消息认证码等,以确保路由信息的完整性和真实性。然而,密码学方案在MANET环境中面临密钥管理复杂、计算和通信开销大等问题,特别是对于资源受限的移动设备而言,这些开销可能难以承受。此外,信任管理方案尝试建立和维护节点之间的信任关系,但信任评估和更新的机制设计复杂,且容易受到协同攻击。
近年来,机器学习技术在网络安全领域的应用越来越广泛,其强大的模式识别和异常检测能力为解决MANET路由安全问题提供了新的思路。特别是多层感知神经网络(MLP)作为一种经典的神经网络模型,具有强大的非线性映射能力,能够从复杂的网络流量数据中学习出隐藏的模式和规律,非常适合用于检测异常的路由行为。
本文旨在探讨基于MLP在MANET中进行路由验证的可行性,提出一种利用MLP模型识别恶意路由行为的方案。通过分析网络节点在路由过程中的各种行为特征,构建合适的特征向量,并训练MLP模型进行分类,从而判断某个路由行为是正常还是恶意的。
二、基于MLP的MANET路由验证系统架构
基于MLP的MANET路由验证系统可以被设计为一个分布式或半分布式的架构。考虑到MANET的无中心特性,一个完全分布式的架构更为理想,每个节点都能够独立或协同地进行路由验证。然而,为了简化模型部署和训练,也可以考虑一个半分布式的架构,其中部分节点负责收集数据、训练模型,并将模型分发给其他节点。本文主要讨论其核心功能模块的设计,不论采用何种架构,这些模块都是必需的。
系统架构可以包含以下主要模块:
- 数据收集模块:
负责在网络节点上收集与路由相关的各类信息,例如路由请求、路由应答、路由更新消息、数据包转发行为、邻居节点信息等。这些数据是构建特征向量的基础。
- 特征提取模块:
将收集到的原始数据转化为可供MLP模型处理的数值型特征向量。有效的特征提取对于MLP模型的性能至关重要。
- MLP模型模块:
核心的路由验证模块,包含一个或多个训练好的MLP模型。该模型接收特征向量作为输入,输出一个判决结果,指示该路由行为是正常或异常(恶意)。
- 决策模块:
基于MLP模型的输出结果,做出相应的安全决策。例如,如果MLP模型判断某个路由行为异常,决策模块可以采取丢弃该路由信息、标记该节点为恶意节点、向其他节点广播警告信息等措施。
三、特征提取
特征提取是将原始的路由行为数据转化为MLP模型能够理解的数值表示的关键步骤。有效的特征能够捕捉正常路由行为的模式以及异常路由行为的偏差。针对MANET路由攻击,可以从以下几个方面提取特征:
-
路由消息特征: 分析路由消息的内容和行为。例如:
- RREQ/RREP/RT-Update消息的频率:
恶意节点可能频繁发送路由消息以扰乱网络。
- 目标序列号(Destination Sequence Number)的合法性:
某些攻击(如黑洞攻击)会伪造较高的序列号以吸引流量。
- 跳数(Hop Count):
伪造的路由信息可能包含不合理的跳数。
- 路由消息的内容一致性:
同一节点的路由消息在不同时间或不同方向上是否一致。
- 消息中的节点身份信息:
检查源节点和中间节点的身份是否合法。
- 路由更新的传播模式:
观察路由更新消息在网络中的传播路径和范围。
- RREQ/RREP/RT-Update消息的频率:
-
数据包转发行为特征: 监测节点的数据包转发行为是否符合预期。例如:
- 数据包转发率:
正常节点会转发到达的数据包,恶意节点(如黑洞或灰色洞)的转发率会异常低。
- 数据包丢失率:
恶意节点会故意丢弃数据包,导致其数据包丢失率异常高。
- 数据包延迟:
蠕虫洞攻击可能导致数据包延迟异常低。
- 数据包转发路径:
分析数据包实际经过的路径是否与路由表中记录的路径一致。
- 转发的数据包类型:
是否存在大量非法的或异常类型的数据包被转发。
- 数据包转发率:
-
邻居节点行为特征: 监测节点与其邻居节点之间的交互行为。例如:
- 邻居节点的数量和稳定性:
恶意节点可能频繁地加入或离开邻居列表。
- 邻居节点的路由信息:
接收到的邻居节点发布的路由信息是否与已知信息矛盾。
- 与其他节点的通信频率和模式:
异常节点可能与特定节点频繁通信,或表现出不正常的通信模式。
- 邻居节点的数量和稳定性:
-
节点自身状态特征: 考虑节点自身的属性和状态。例如:
- 节点的能量水平:
某些攻击可能与节点的能量消耗异常相关。
- 节点的移动速度和方向:
异常的移动模式可能与某些攻击相关。
- 节点的能量水平:
将这些不同维度的特征整合成一个多维向量作为MLP模型的输入。在实际应用中,需要对特征进行归一化或标准化处理,以提高模型的训练效率和性能。此外,特征选择也是一个重要的步骤,选择最具代表性和区分度的特征可以有效降低模型的复杂性并提高准确性。
四、MLP模型训练与验证
MLP模型是一种前馈人工神经网络,由输入层、一个或多个隐藏层和输出层组成。每个神经元通过激活函数对输入进行非线性变换,并将结果传递给下一层。通过训练,MLP模型能够学习输入特征与输出类别之间的复杂非线性关系。
基于MLP的MANET路由验证的训练过程主要包括以下步骤:
- 数据集准备:
收集大量的MANET路由行为数据,并对数据进行标注,区分正常行为和恶意行为。标注数据可以来自于实际网络部署中的行为观察,也可以通过仿真环境生成,模拟各种路由攻击场景。数据集的质量和规模直接影响MLP模型的性能。
- 特征工程:
根据第三节所述,对收集到的数据进行特征提取和预处理,生成可供MLP模型输入的特征向量。
- MLP模型构建:
设计MLP模型的结构,包括隐藏层的数量、每层神经元的数量以及激活函数的选择。隐藏层数量和神经元数量的选择需要权衡模型的复杂度和性能,过少的隐藏层可能无法捕捉复杂的模式,过多的隐藏层可能导致过拟合。常用的激活函数包括ReLU、Sigmoid和Tanh等。
- 模型训练:
使用准备好的标注数据集对MLP模型进行训练。训练过程通过反向传播算法调整模型内部的权重和偏置,使得模型在训练集上的输出尽可能接近真实的标签。训练过程中需要选择合适的损失函数(例如交叉熵)和优化器(例如Adam、SGD)来指导模型的学习。训练过程中还需要设置学习率、批大小等超参数,并进行迭代优化。
- 模型验证与评估:
在训练过程中,使用独立的验证集来评估模型的性能,防止过拟合。常用的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1-Score和AUC(Area Under the ROC Curve)等。在模型训练完成后,使用独立的测试集对模型进行最终评估,以衡量模型在未知数据上的泛化能力。
针对MANET路由验证的二分类问题(正常/恶意),MLP模型的输出层通常只有一个神经元,使用Sigmoid激活函数,输出一个介于0到1之间的概率值,表示该路由行为属于恶意类别的概率。通过设置一个阈值,可以将概率值转化为最终的分类结果。
五、基于MLP的路由验证的优势与挑战
优势:
- 强大的非线性建模能力:
MLP能够学习复杂的非线性关系,适用于检测难以用简单规则描述的异常路由行为。
- 自动特征学习:
在一定程度上,MLP可以通过隐藏层自动学习数据中的高级特征,减少人工特征工程的工作量。
- 对未知攻击的潜在检测能力:
通过学习正常行为的模式,MLP可能能够识别出未知的、与已知攻击不同的异常行为。
- 分布式部署的可能性:
训练好的MLP模型可以部署在MANET节点上,实现分布式的路由验证。
- 适应动态环境:
通过持续收集新的数据并更新模型,MLP可以适应MANET动态变化的拓扑和网络环境。
挑战:
- 数据收集和标注困难:
在真实的MANET环境中,收集大量的、高质量的、并且准确标注的路由行为数据是一项挑战,尤其是在面临各种攻击的情况下。
- 特征选择和工程的复杂度:
选择能够有效区分正常和恶意行为的特征需要深入的领域知识和大量的实验。
- 模型训练的计算开销:
MLP模型的训练需要大量的计算资源和时间,特别是在数据集规模较大时。
- 实时性要求:
MANET的路由过程对实时性要求很高,MLP模型的推理速度需要足够快,以便在数据包转发或路由消息处理的关键路径上进行验证。
- 模型更新和分发:
在动态的MANET环境中,模型需要定期更新以适应网络变化和新型攻击。如何高效地在分布式节点上更新和分发模型是一个需要解决的问题。
- 误报和漏报问题:
任何异常检测系统都可能存在误报(将正常行为判定为恶意)和漏报(将恶意行为判定为正常)的问题,需要在性能指标之间进行权衡。
- 对抗性攻击:
恶意攻击者可能会针对MLP模型进行对抗性攻击,生成能够欺骗模型的恶意样本。
六、未来研究方向
基于MLP的MANET路由验证研究仍有许多值得探索的方向:
- 轻量级MLP模型设计:
针对MANET节点资源受限的特点,研究如何设计更轻量级、计算效率更高的MLP模型,以满足实时性要求。
- 在线学习和增量学习:
研究如何利用在线学习或增量学习技术,使MLP模型能够实时地从新数据中学习并更新,适应MANET的动态环境。
- 迁移学习和联邦学习:
探索将预训练的模型迁移到MANET环境,或者利用联邦学习技术在多个节点上进行分布式模型训练,保护节点数据的隐私。
- 与其他安全机制的融合:
将基于MLP的路由验证与其他安全机制(如密码学、信任管理)相结合,构建更全面的MANET路由安全体系。
- 对抗性攻击的防御:
研究如何提升基于MLP的路由验证系统对对抗性攻击的鲁棒性。
- 可解释性研究:
研究如何提高MLP模型的可解释性,理解模型做出判断的依据,以便更好地诊断问题和改进模型。
- 仿真和实际部署评估:
在大规模仿真环境和实际MANET testbed中对提出的方案进行全面的性能评估,验证其有效性和可行性。
七、结论
基于MLP的移动自组网路由验证为提升MANET的路由安全性提供了一种有前景的机器学习方法。通过将路由行为转化为可量化的特征向量,并利用MLP强大的非线性分类能力,可以有效地识别和检测恶意路由行为,抵御常见的路由攻击。尽管面临数据收集、特征工程、计算开销和实时性等挑战,但随着机器学习技术的不断发展和研究的深入,相信基于MLP的MANET路由验证技术将会在未来发挥越来越重要的作用。未来的研究应着重于提高模型的效率、适应性、鲁棒性和可解释性,并探索与其他安全机制的融合,以构建更强大、更可靠的MANET路由安全解决方案。
⛳️ 运行结果
🔗 参考文献
[1] 张芝华.MANET中基于平衡估价函数的路由协议研究[D].中南大学[2025-05-11].DOI:CNKI:CDMD:2.2007.171250.
[2] 熊焰,苗付友,张伟超,等.移动自组网中基于多跳步加密签名函数签名的分布式认证[J].电子学报, 2003, 31(002):161-165.DOI:10.3321/j.issn:0372-2112.2003.02.001.
[3] 许力,郑宝玉,吴子文.移动自组网中节能路由策略的分析与比较[J].计算机应用研究, 2004, 21(5):4.DOI:10.3969/j.issn.1001-3695.2004.05.001.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇