【信号处理】天线分集与空时编码技术——空时格码附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

 在无线通信环境中,多径衰落是影响信号传输可靠性的主要因素之一。为了有效对抗多径衰落带来的影响,提高无线通信系统的性能,人们提出了多种分集技术和更先进的空时编码技术。本文将深入探讨天线分集的基本原理,在此基础上重点阐述空时编码技术,特别是具有代表性的空时格码(Space-Time Trellis Codes, STTC)。我们将分析空时格码的设计思想、编码原理、解码过程以及其在提高系统容量、降低误码率方面的优势。同时,也将讨论空时格码面临的挑战和未来的发展方向。

关键词: 无线通信;多径衰落;天线分集;空时编码;空时格码;信号处理

1. 引言

随着无线通信技术的飞速发展,用户对通信质量和速率的需求日益增长。然而,无线信道的复杂性,特别是多径传播引起的信号衰落和干扰,严重制约了无线通信系统的性能。多径衰落是指发送端发出的信号经过多条路径到达接收端,由于不同路径长度、反射、散射等因素,信号在接收端叠加时可能出现相长或相消干涉,导致接收信号的幅度、相位和极化发生变化,从而引起信号强度的大幅波动,即衰落。在严重的衰落环境下,接收信号强度可能远低于检测阈值,导致误码率急剧升高,甚至通信中断。

为了应对多径衰落带来的挑战,人们提出了多种抗衰落技术。其中,分集技术是一种行之有效的方法,其核心思想是通过多条独立的衰落路径传输同一信息,并在接收端进行合并,从而降低信号经历深度衰落的概率。常见的分集技术包括时间分集、频率分集和空间分集(天线分集)。本文将重点关注天线分集和在此基础上发展起来的空时编码技术。

天线分集利用多个天线在空间上进行分离,使得通过不同天线接收到的信号经历相对独立或不相关的衰落。通过合理的接收信号处理,可以有效地改善接收信号的质量。然而,传统的天线分集技术通常只在接收端利用空间资源,发送端仍使用单天线。为了进一步提高系统性能,特别是系统容量,人们开始探索如何在发送端也利用多个天线。空时编码技术应运而生,它是一种将编码技术与多天线技术相结合的先进技术,能够在发送端对信息进行编码,并将编码后的信号在多个发送天线上进行联合传输,在接收端利用多个接收天线进行联合解码,从而同时获得分集增益和编码增益。

空时编码技术根据编码结构的不同,主要分为空时格码(STTC)和空时分组码(STBC)。空时格码是一种基于格型编码思想的空时编码技术,它将编码和调制紧密结合,通过在时间和空间维度上进行编码,实现对信号的联合处理。与空时分组码相比,空时格码通常能够提供更大的编码增益,但其解码复杂度也相对较高。本文将重点探讨空时格码的设计原理、性能分析及其在无线通信系统中的应用。

2. 天线分集原理

天线分集,又称空间分集,是利用接收端(或发送端)多个在空间上分离的天线来对抗多径衰落的技术。其基本原理是,由于不同天线之间的空间间隔足够大(通常需要达到半个波长或以上,以保证各天线接收到的信号经历独立或弱相关的衰落),不同天线接收到的同一信号经历的衰落过程是相互独立的。因此,当某个天线接收到的信号经历深度衰落时,其他天线接收到的信号很有可能仍具有较强的强度。通过将这些独立衰落路径上的信号进行合并,可以显著降低所有路径同时经历深度衰落的概率,从而提高接收信号的平均信噪比和可靠性。

天线分集可以在发送端或接收端实现,也可以同时在两端实现(MIMO系统)。根据实现方式的不同,常见的天线分集技术包括:

  • 接收分集:

     在接收端配置多个天线,发送端使用单天线。接收到的信号通过不同的接收天线,经历独立衰落。接收端对这些信号进行合并。

  • 发送分集:

     在发送端配置多个天线,接收端使用单天线。发送端在不同天线上发送经过处理的信号。

  • 收发分集(MIMO):

     在发送端和接收端都配置多个天线。这是现代无线通信系统(如Wi-Fi 4/5/6,LTE,5G等)中常用的技术,能够同时提供分集增益、阵列增益和空间复用增益。

在接收分集中,常用的信号合并技术包括:

  • 选择合并(Selection Combining, SC):

     选择接收到信号强度最强的天线输出作为接收信号。这种方法实现简单,但只利用了部分接收到的信息。

  • 相等增益合并(Equal Gain Combining, EGC):

     将所有接收天线接收到的信号按相等增益相加。这种方法比选择合并能够提供更好的性能。

  • 最大比合并(Maximal Ratio Combining, MRC):

     将每个接收天线接收到的信号根据其信噪比进行加权后相加。权重与该天线信道增益成比例,并与信道相位共轭。最大比合并是理想的线性合并方式,能够最大化合并后信号的信噪比,提供最佳的性能。

天线分集是一种有效的抗衰落技术,能够在不增加带宽和发射功率的情况下提高通信系统的可靠性。然而,传统的天线分集主要关注于提供分集增益,即降低深衰落的概率,对于提高系统容量的贡献有限。为了进一步挖掘多天线系统的潜力,空时编码技术应运而生。

3. 空时编码技术

空时编码技术是一种利用发送端的多个天线对信息进行编码,并在时间和空间维度上进行联合处理的技术。其核心思想是将信息流分散到多个发送天线上并在连续的时间间隔内传输,在接收端利用多个接收天线接收这些信号,并通过联合解码来恢复原始信息。空时编码技术能够在提供分集增益的同时,也提供编码增益和可能的空间复用增益,从而显著提升系统的性能和容量。

空时编码的主要目标包括:

  • 提供分集增益:

     通过在多个独立衰落路径上发送冗余信息,降低深衰落对性能的影响,提高传输可靠性。

  • 提供编码增益:

     通过在编码过程中引入冗余,利用信号结构上的相关性来提高抗噪声和抗干扰能力。

  • 提高系统容量:

     在保证可靠性的前提下,通过空间复用等技术提高数据传输速率。

根据编码结构和设计思想的不同,空时编码技术主要分为:

  • 空时格码(Space-Time Trellis Codes, STTC):

     基于格型编码的思想,将编码和调制紧密结合,通过在时间和空间维度上进行联合编码和解码。

  • 空时分组码(Space-Time Block Codes, STBC):

     将信息符号组织成矩阵形式,在发送天线上进行分组传输。常用的STBC包括Alamouti码,它是一种简单的正交空时分组码,能够提供满阶的分集增益且解码复杂度低。

本文将重点讨论空时格码。

4. 空时格码(Space-Time Trellis Codes, STTC)

空时格码是由Tarokh等人于1997年首次提出的,它将传统的格型编码(Trellis Coded Modulation, TCM)的思想扩展到多天线系统中。空时格码的核心思想是利用状态转移来控制在不同发送天线上发送的调制符号序列,使得这些序列在时间和空间上具有一定的相关性,从而在接收端进行联合解码时能够获得分集增益和编码增益。

4.1 空时格码的编码原理

空时格码的设计目标是最大化最小欧氏距离(Minimum Euclidean Distance)或其平方,以提高抗噪声性能。一个好的空时格码应该在满足分集增益要求的前提下,具有尽可能大的最小欧氏距离。

4.2 空时格码的设计准则

    设计空时格码通常涉及到寻找合适的编码映射规则和状态转移图,使得生成的符号序列满足上述秩准则和行列式准则。这通常是一个复杂的优化问题,可以通过计算机搜索或代数结构设计等方法来解决。

    4.3 空时格码的解码

    4.4 空时格码的性能分析

    空时格码的性能通常通过误码率(Bit Error Rate, BER)或误帧率(Frame Error Rate, FER)来衡量。在AWGN信道或慢衰落信道下,空时格码的性能主要取决于其分集增益和编码增益。

    与相同调制方式和分集增益的传统系统相比,空时格码能够提供显著的编码增益,从而在较低的信噪比下获得更好的性能。

    4.5 空时格码的优势与挑战

    优势:

    • 提供高分集增益:

       通过合理设计,可以获得与发送天线数和接收天线数相关的满阶或接近满阶的分集增益,有效对抗多径衰落。

    • 提供显著的编码增益:

       将编码和调制联合设计,能够利用信号结构的冗余来提高抗噪声能力。

    • 潜在的容量增益:

       在提供可靠传输的同时,可以通过增加发送天线数来提高传输速率。

    挑战:

    • 高解码复杂度:

       随着发送天线数和状态数的增加,维特比解码算法的计算复杂度呈指数增长,限制了空时格码在实际系统中的应用规模。

    • 格码设计困难:

       寻找具有良好秩和行列式性能的空时格码是一个具有挑战性的优化问题,特别是对于大规模系统。

    • 对信道状态信息(CSI)的依赖:

       ML解码通常需要准确的信道状态信息,信道估计的误差会影响解码性能。

    5. 空时格码的改进与发展

    为了降低空时格码的解码复杂度,提高其在实际系统中的可行性,人们提出了多种改进和优化方法:

    • 次优解码算法:

       例如,基于Sphere Decoding(球形解码)或M-algorithm的次优解码算法,通过限制搜索空间来降低复杂度,但会带来一定的性能损失。

    • 低复杂度格码设计:

       研究具有特殊结构的空时格码,例如具有稀疏格结构或分布式空时格码,以简化编码和解码过程。

    • 迭代解码技术:

       将空时格码与外码相结合,采用迭代解码(如Turbo或LDPC码),通过软信息交换来提高性能并降低整体复杂度。

    • 自适应空时格码:

       根据信道条件自适应地调整空时格码的编码速率和结构,以平衡性能和复杂度。

    此外,随着MIMO-OFDM等技术的普及,空时格码也需要与OFDM技术相结合,发展出适用于多载波系统的空时格码方案。

    6. 结论

    多径衰落是无线通信面临的核心挑战之一。天线分集是一种有效的抗衰落技术,通过利用空间资源来提供分集增益。空时编码技术在此基础上进一步发展,将编码和多天线技术相结合,能够在提供分集增益的同时,也提供编码增益,显著提升系统的性能。

    空时格码作为一种重要的空时编码技术,具有良好的分集和编码增益性能。然而,其较高的解码复杂度是限制其大规模应用的主要瓶颈。尽管如此,通过不断研究和发展低复杂度解码算法、优化格码设计以及与其他技术相结合,空时格码在未来无线通信系统中仍然具有重要的应用潜力。

    随着5G/6G等新一代无线通信技术的发展,对系统容量和可靠性的需求越来越高,多天线技术和先进的空时编码技术将发挥越来越重要的作用。对空时格码的深入研究和创新,将有助于克服无线信道带来的挑战,推动无线通信技术的持续进步。

    ⛳️ 运行结果

    🔗 参考文献

    [1] 卢鑫,庞伟正,赵曙光.通信信号处理的新技术——空时编码[J].无线电通信技术, 2003, 29(2):50-52.DOI:10.3969/j.issn.1003-3114.2003.02.019.

    [2] 卢鑫,庞伟正,赵曙光.通信信号处理的新技术--空时编码[J].无线电通信技术, 2003.DOI:CNKI:SUN:WXDT.0.2003-02-018.

    [3] 刘丹阳.遥测系统空时编码与调制技术研究[D].中国运载火箭技术研究院,2020.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇 

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值