【双层优化】分布式光伏储能系统的优化配置方法【IEEE33节点】附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的转型和“双碳”目标的提出,分布式光伏发电作为一种清洁、可再生的能源形式,正以前所未有的速度发展。然而,光伏出力的随机性、波动性和间歇性对电网的稳定运行带来了严峻挑战。储能系统凭借其灵活的充放电特性,成为解决分布式光伏并网问题的关键技术。如何科学合理地对分布式光伏和储能系统进行容量配置,以最大限度地发挥其综合效益,成为当前研究的热点和难点。本文针对含分布式光伏的配电网,提出了一种基于双层优化模型的分布式光伏储能系统优化配置方法。上层模型以配电网整体运行经济性(包括购电成本、网损成本、弃光成本和储能运维成本)最小化为目标,优化分布式光伏和储能系统的安装容量和位置。下层模型在给定光伏和储能配置方案下,以典型日配电网运行成本(包括购电成本和网损成本)最小化为目标,优化储能系统的充放电策略以及电网与外部的功率交换。通过将上层容量配置问题与下层运行调度问题解耦,实现了对分布式光伏储能系统配置方案的全局最优求解。基于IEEE33节点配电网系统进行算例分析,验证了所提方法的有效性和优越性。研究结果表明,所提出的双层优化模型能够有效地确定分布式光伏和储能系统的最优配置方案,降低系统总运行成本,提高分布式光伏的消纳率,为含分布式光伏的配电网规划提供了有益的参考。

关键词: 分布式光伏;储能系统;优化配置;双层优化;IEEE33节点

1. 引言

随着能源危机和环境污染问题的日益突出,发展清洁能源已成为全球共识。分布式光伏发电因其清洁无污染、易于安装和维护等特点,在全球范围内得到了广泛应用。然而,光伏出力的受气候条件影响较大,存在显著的波动性和间歇性,这使得大量分布式光伏并网后,给配电网带来了诸多挑战,例如电压波动、潮流反向、网损增加以及弃光现象等 [1]。

储能系统具有快速响应和灵活调度的能力,能够有效地平抑光伏出力的波动,提高分布式光伏的并网能力和消纳率,改善配电网的运行稳定性。将储能系统与分布式光伏相结合,构建分布式光伏储能系统,能够充分发挥两者的互补优势,提升配电网的整体性能。然而,储能系统的初投资和运行维护成本较高,对其进行科学合理的容量和位置配置至关重要。容量过小无法有效发挥作用,容量过大则会增加经济负担。同时,储能系统的安装位置也会显著影响其运行效果和对配电网的改善程度。

目前,国内外学者对含分布式光伏的配电网中储能系统的配置问题进行了大量研究 [2, 3]。这些研究大多集中在以下几个方面:一是优化储能容量配置,以实现特定目标,如最大化光伏消纳、最小化购电成本、最小化网损等 [4, 5]。二是优化储能位置配置,通过选择最优安装节点来最大化储能的效益 [6]。三是将容量和位置配置问题相结合,进行联合优化 [7]。然而,大多数研究将储能系统的配置问题视为一个单层优化问题,忽略了储能系统在实际运行中需要根据实时电力供需情况和电网状态进行动态调度。储能系统的最优配置方案与其实际运行策略密切相关。一个高效的运行策略能够最大限度地发挥储能的潜力,从而影响最优的配置方案。因此,在进行储能系统配置时,需要充分考虑其未来的运行调度。

双层优化模型能够有效地处理这类具有决策层次结构的复杂问题,即一个优化问题的决策结果会影响另一个优化问题的决策过程 [8, 9]。在这种结构中,上层优化问题通常代表规划层面的长期决策,以下层优化问题的最优解为约束;下层优化问题代表运行层面的短期决策,以上层优化问题的决策结果为输入。将分布式光伏和储能系统的容量和位置配置视为上层规划问题,将储能系统的运行调度以及电网与外部的功率交换视为下层运行问题,构建双层优化模型,能够更加准确地反映实际情况,获得更优的配置和运行方案。

基于上述分析,本文提出了一种基于双层优化模型的分布式光伏储能系统优化配置方法。上层优化模型旨在确定分布式光伏和储能系统的安装容量和位置,以最小化配电网整体经济成本。下层优化模型则以典型日配电网运行成本最小化为目标,优化储能系统的充放电策略。通过求解该双层优化模型,可以获得分布式光伏和储能系统的最优配置方案以及对应的最优运行策略。

2. 双层优化模型构建

本文提出的双层优化模型结构如图1所示。

图1 双层优化模型结构示意图

[此处应插入双层优化模型结构示意图,包括上层优化和下层优化的目标、决策变量和约束条件]

2.1 上层优化模型

上层优化模型的目标是在给定分布式光伏和储能系统可能安装的节点集合下,确定每个节点的分布式光伏安装容量和储能系统安装容量。上层优化问题的目标函数是最小化配电网在整个规划周期内的总经济成本。考虑到规划周期通常较长,需要考虑不同时间尺度下的成本,本文采用典型日作为代表进行计算,并将结果扩展至整个规划周期。上层优化的目标函数可表示为:

min⁡Ctotal=Cpurchase+Closs+Ccurtailment+Cstorage_om

上层优化的决策变量为:

Ppv_install,i,Estorage_install,i∀i∈Ncandidates

上层优化模型的约束条件主要包括:

    2.2 下层优化模型

    下层优化模型在给定上层确定的分布式光伏和储能系统配置方案(即各节点的光伏和储能容量)下,以最小化典型日配电网运行成本为目标,优化储能系统的充放电策略以及配电网与上级电网的功率交换。下层优化的目标函数可表示为:

    min⁡Coperation=∑t=1T(cpurchase(t)Pgrid,t+closs(t)∑l∈LRlIl,t2+ccurtailmentPcurtailment,t)+Cstorage_om_daily

    下层优化的决策变量为:

    Pgrid,t,Pstorage_charge,i,t,Pstorage_discharge,i,t,Estorage,i,t,Pcurtailment,t∀i∈Nstorage,∀t∈{1,…,T}

    下层优化模型的约束条件主要包括:

    2.3 双层优化模型的求解

    双层优化模型通常是复杂的非凸问题,求解难度较大。常用的求解方法包括:

    1. 基于KKT条件的转化方法:

       对于下层问题是凸规划的情况,可以将其转化为其KKT条件作为约束,并与上层问题一起形成一个单层数学规划问题 [11]。然而,由于下层问题中潮流约束通常是非线性的,且储能系统的充放电互斥约束也是非线性的,直接转化为KKT条件可能导致复杂的非线性非凸问题。

    2. 智能优化算法:

       利用进化算法(如遗传算法、粒子群算法)或群智能算法来求解。上层算法负责优化容量和位置,将配置方案传递给下层;下层算法负责优化运行策略,并将运行成本反馈给上层。这种方法虽然可以处理非凸问题,但计算量较大,收敛性难以保证。

    3. 分解协调方法:

       将双层问题分解为上层和下层两个子问题,通过迭代过程实现协调。例如,可以采用广义Benders分解方法或交替迭代优化方法 [12]。

    考虑到本文下层问题中的潮流约束和储能运行约束的复杂性,直接采用KKT条件转化可能过于困难。智能优化算法虽然可行,但计算效率可能较低。本文拟采用一种基于迭代优化的方法来求解该双层模型。具体步骤如下:

    在每次迭代中,上层优化会尝试找到更好的配置方案,而下层优化则会评估该方案在实际运行中的效益。通过不断迭代,使得配置方案和运行策略相互适应,最终趋于最优。

    3. 算例分析

    为了验证所提方法的有效性,本文基于经典的IEEE33节点配电网系统进行算例分析。IEEE33节点系统是一个典型的径向配电网,具有33个节点和32条线路。我们假设在部分节点可以安装分布式光伏和储能系统。负荷数据采用典型日的24小时负荷曲线,分布式光伏出力曲线采用典型日的24小时光照强度数据结合安装容量进行计算。购电价格采用分时电价。储能系统的效率、最大充放电功率与容量的关系等参数均根据现有技术水平设定。

    3.1 算例设置

      3.2 结果分析

      通过求解双层优化模型,可以得到分布式光伏和储能系统的最优安装容量和位置,以及对应的最优典型日运行策略。我们将分析以下几个方面:

      1. 最优配置方案:

         展示不同节点上分布式光伏和储能系统的安装容量。

      2. 系统总成本:

         比较不同配置方案下(例如,无分布式光伏和储能、仅光伏、仅储能、光伏+储能,以及不同配置方法下)的系统总经济成本。

      3. 储能运行策略:

         展示最优配置方案下典型日储能系统的充放电曲线和荷电状态变化。

      4. 配电网运行指标:

         分析最优配置方案对配电网运行指标的影响,如购电功率、网损、节点电压分布、光伏消纳率等。

      5. 灵敏度分析:

         分析关键参数(如电价、弃光惩罚成本、储能成本等)对最优配置方案和运行结果的影响。

      通过对比不同场景下的结果,可以验证所提双层优化方法的有效性和优越性。例如,与单层优化相比,双层优化方法能够更全面地考虑储能系统的运行特性,从而获得更符合实际情况且经济性更好的配置方案。

      4. 结论

      本文针对含分布式光伏的配电网,提出了一种基于双层优化模型的分布式光伏储能系统优化配置方法。上层模型以配电网整体经济性最优为目标,优化分布式光伏和储能系统的容量和位置;下层模型在给定配置方案下,以典型日运行成本最优为目标,优化储能系统的充放电策略。通过迭代求解双层优化模型,实现了配置与运行的协同优化。

      算例分析基于IEEE33节点配电网系统进行,验证了所提方法的有效性。研究结果表明,所提出的双层优化模型能够有效地确定分布式光伏和储能系统的最优配置方案,在考虑储能系统运行特性的同时,最小化配电网的总经济成本,提高分布式光伏的消纳率。

      未来的研究方向可以包括:

      • 考虑分布式光伏和负荷预测的不确定性,采用鲁棒优化或随机优化方法进行配置。

      • 考虑储能系统的衰减特性和寿命周期成本。

      • 考虑不同类型的储能技术以及它们的特性差异。

      • 将多目标优化纳入考虑,例如同时优化经济性、可靠性和电能质量。

      • 研究更高效的双层优化求解算法,特别是针对大规模配电网系统。

      ⛳️ 运行结果

      🔗 参考文献

      [1] 臧天磊.配电网静态优化与故障恢复重构策略研究[D].西南交通大学,2012.DOI:10.7666/d.y2109116.

      [2] 毛志宇,蒋叶,李培强,等.基于改进灰狼算法的配电网储能优化配置[J].电力系统及其自动化学报, 2022, 34(6):8.DOI:10.19635/j.cnki.csu-epsa.000890.

      [3] 薛贸方.基于改进粒子群算法的分布式电源配电网无功优化研究[D].华北电力大学(北京),2023.

      📣 部分代码

      🎈 部分理论引用网络文献,若有侵权联系博主删除

       👇 关注我领取海量matlab电子书和数学建模资料 

      🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

      🌈 各类智能优化算法改进及应用
      生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
      🌈 机器学习和深度学习时序、回归、分类、聚类和降维

      2.1 bp时序、回归预测和分类

      2.2 ENS声神经网络时序、回归预测和分类

      2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

      2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

      2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
      2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

      2.7 ELMAN递归神经网络时序、回归\预测和分类

      2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

      2.9 RBF径向基神经网络时序、回归预测和分类

      2.10 DBN深度置信网络时序、回归预测和分类
      2.11 FNN模糊神经网络时序、回归预测
      2.12 RF随机森林时序、回归预测和分类
      2.13 BLS宽度学习时序、回归预测和分类
      2.14 PNN脉冲神经网络分类
      2.15 模糊小波神经网络预测和分类
      2.16 时序、回归预测和分类
      2.17 时序、回归预测预测和分类
      2.18 XGBOOST集成学习时序、回归预测预测和分类
      2.19 Transform各类组合时序、回归预测预测和分类
      方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
      🌈图像处理方面
      图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
      🌈 路径规划方面
      旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
      🌈 无人机应用方面
      无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
      🌈 通信方面
      传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
      🌈 信号处理方面
      信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
      🌈电力系统方面
      微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
      🌈 元胞自动机方面
      交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
      🌈 雷达方面
      卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
      🌈 车间调度
      零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

      👇 

      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包
      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值