一种利用并网变流器获得最大允许电网支持的分析方法[MAS技术 变流器电网支座分析优化]附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着可再生能源发电技术的飞速发展和并网规模的不断扩大,并网变流器作为连接新能源发电单元与电力系统的关键设备,其性能和控制策略对电力系统的稳定运行具有至关重要的影响。传统上,变流器主要被视为“功率注入器”,关注其最大功率点的跟踪和电能质量的满足。然而,在现代电力系统中,随着新能源渗透率的提高,电网的惯量和短路容量不断下降,电网的支撑能力面临挑战。因此,利用并网变流器为电网提供必要的支撑服务,提升系统的稳定性和可靠性,已成为当前研究和实践的热点。

“最大允许电网支持”(Maximum Allowable Grid Support, MAGS)这一概念应运而生,它旨在量化并网变流器在特定电网条件下能够提供的最大支撑能力,并为变流器的控制策略优化提供理论依据。本文将深入探讨一种利用并网变流器获得最大允许电网支持的分析方法,重点介绍相关的MAS技术以及变流器电网支座的分析与优化。我们将从电网支持的需求、变流器的支撑能力、MAGS的定义与量化、分析方法和优化策略等方面进行详细阐述。

一、 电网支撑的需求与变流器的支撑能力

1.1 现代电网对支撑的需求

传统的电力系统以同步发电机为主要电源,其固有的同步惯量和励磁系统提供了强大的电网支撑能力,包括:

  • 惯量支持:

     抵抗频率变化,维持系统频率稳定。

  • 电压支持:

     维持系统电压稳定,提供无功功率补偿。

  • 暂态稳定性支持:

     在扰动发生时,帮助系统恢复同步运行。

  • 故障电流支持:

     在故障发生时提供足够的短路电流,确保继电保护装置的可靠动作。

然而,随着风电、光伏等新能源的大规模并网,由于其通过变流器接口,不具备同步发电机的固有惯量和同步力,导致电网的整体惯量和短路容量下降,电网的脆弱性增加。尤其是在弱电网条件下,新能源并网带来的挑战更为突出,可能导致以下问题:

  • 频率稳定性下降:

     对功率扰动更为敏感,频率波动剧烈。

  • 电压稳定性下降:

     容易发生电压崩溃,无功功率支撑不足。

  • 振荡问题加剧:

     与电网阻抗相互作用,可能引发次同步振荡或超同步振荡。

  • 继电保护失灵风险:

     故障电流水平降低,影响继电保护的可靠性。

因此,现代电网迫切需要并网变流器能够从“功率注入器”的角色向“电网支撑者”的角色转变,主动为电网提供上述支撑服务。

1.2 并网变流器的支撑能力

尽管并网变流器不具备同步发电机的物理特性,但其基于电力电子开关的高速可控性,使其具备了提供多种电网支撑服务的潜力。通过先进的控制策略,变流器可以模拟或提供类似同步发电机的电网支撑功能:

  • 虚拟惯量控制 (Virtual Inertia Control, VIC):

     通过模拟同步发电机的摆动方程,在频率变化时主动调整输出功率,提供虚拟惯量支持,抑制频率波动。

  • 虚拟同步发电机控制 (Virtual Synchronous Generator Control, VSG):

     模拟同步发电机的完整模型,包括惯量、阻尼和同步力等,提供更全面的同步特性支持。

  • 电压无功控制:

     通过调节输出电压幅度和相位,提供无功功率补偿,维持电网电压稳定。可以实现电压支撑、动态无功补偿等功能。

  • 故障穿越控制 (Fault Ride-Through, FRT):

     在电网发生故障时,变流器能够持续运行,甚至为电网提供故障电流支持,帮助系统恢复稳定。

  • 阻尼控制:

     通过有源阻尼的方式,抑制电网中的振荡。

  • 同步力支持:

     通过控制输出功率和相位,模拟同步发电机的同步力,增强并网系统的同步稳定性。

这些支撑能力的发挥依赖于变流器的硬件设计、控制算法以及与电网的相互作用特性。变流器的最大输出功率、电流限制、带宽、控制器参数等都会影响其能够提供的支撑能力。

二、 最大允许电网支持(MAS技术)的定义与量化

2.1 MAGS的定义

最大允许电网支持(MAGS)可以定义为在特定电网运行条件下,并网变流器能够提供的满足电网运行指标要求的最大支撑服务容量或能力。这里的“电网运行指标要求”可以包括频率稳定裕度、电压稳定裕度、暂态稳定性裕度、谐波畸变率、短路容量等。MAGS并非一个单一的数值,而是一个多维度的概念,可能涉及到不同类型的支撑能力的组合。

MAS技术(Maximum Allowable Support Technology)是研究和实现变流器最大允许电网支持的相关技术和方法体系,它涵盖了MAGS的定义、量化、分析、优化和控制策略设计等多个方面。

2.2 MAGS的量化

量化MAGS是实现其分析和优化的基础。根据不同的电网支撑需求,MAGS的量化方式可以多样化:

  • 基于稳定性裕度的量化:
    • 频率稳定裕度:

       例如,变流器能够提供的最大虚拟惯量,使得系统在给定扰动下频率变化不超过预设范围。

    • 电压稳定裕度:

       例如,变流器能够提供的最大无功功率补偿能力,使得系统在负荷变化时电压波动不超过预设范围。

    • 暂态稳定性裕度:

       例如,变流器在给定故障后能够维持同步运行的最大功率水平,或者能够提供的最大同步力系数。

  • 基于特定性能指标的量化:
    • 故障电流贡献能力:

       变流器在不同类型的故障下能够提供的最大故障电流幅值和相位。

    • 有源阻尼能力:

       变流器能够提供的最大阻尼系数,用于抑制特定频率的振荡。

    • 谐波抑制能力:

       变流器在特定条件下能够注入或吸收的最大谐波电流。

  • 基于容量或能力的量化:
    • 最大可提供的虚拟惯量常数。
    • 最大可提供的无功功率输出范围。
    • 最大可提供的同步力系数。

MAGS的量化是一个复杂的任务,它受到变流器自身限制(如电流限制、电压限制、开关频率等)、电网运行状态(如电网阻抗、负荷水平、其他并网电源状态等)以及电网运行指标要求的影响。因此,MAGS并非一个固定的数值,而是随着电网运行条件动态变化的。

三、 MAS技术在变流器电网支座分析与优化中的应用

MAS技术为变流器电网支座的分析与优化提供了关键的视角和工具。所谓“变流器电网支座”,可以理解为变流器与电网相互作用形成的支撑关系,以及变流器通过其控制能力为电网提供的支撑能力集合。MAS技术的核心在于分析和优化这个“支座”的功能,使其能够提供最大的允许电网支持。

3.1 基于MAS技术的变流器电网支座分析方法

分析变流器电网支座的目的是理解变流器的支撑能力如何受到各种因素的影响,并量化其MAGS。常用的分析方法包括:

  • 小信号稳定性分析:

     建立变流器与电网互联系统的小信号模型,通过特征值分析、根轨迹分析等方法,评估系统在不同变流器控制参数下的稳定性,并确定能够维持系统稳定所需的最小或最大支撑能力,从而量化基于稳定性裕度的MAGS。例如,分析变流器虚拟惯量控制对系统频率稳定性的影响,确定其最大有效虚拟惯量。

  • 大扰动暂态稳定性分析:

     利用时域仿真方法,模拟电网发生故障(如短路、线路跳闸)等大扰动,评估变流器在不同支撑策略下的暂态响应和系统恢复能力。通过重复仿真和参数扫描,可以确定变流器在保证系统暂态稳定性的前提下能够提供的最大支撑能力。例如,评估变流器的故障穿越能力,确定其能够承受的最大电压跌落幅度或提供的最大故障电流。

  • 功率流和电压稳定性分析:

     通过电力系统潮流计算和电压稳定性分析工具,评估变流器提供的无功功率支撑对电网电压分布和电压稳定裕度的影响。确定变流器在满足电压运行要求的前提下能够提供的最大无功功率补偿能力。

  • 电网阻抗特性分析:

     分析变流器并网点处的等效电网阻抗特性。电网阻抗的幅值和相位对变流器控制策略的稳定性有重要影响,尤其是在弱电网条件下。理解电网阻抗特性有助于设计鲁棒的控制策略,并评估变流器在不同电网强度下的支撑能力。

  • 控制系统性能分析:

     分析变流器控制器的带宽、动态响应速度、参数裕度等对支撑能力的影响。例如,控制器的带宽限制了变流器对快速电网变化的响应速度,从而影响其虚拟惯量和阻尼效果。

这些分析方法可以单独使用,也可以结合起来,从不同角度评估变流器的电网支座能力。通过这些分析,可以量化在特定电网条件下,变流器在满足各种运行指标要求的前提下能够提供的最大允许支撑能力。

3.2 基于MAS技术的变流器电网支座优化策略

在对变流器电网支座进行分析并量化MAGS之后,下一步便是进行优化,以最大程度地发挥变流器的电网支撑潜力。优化策略可以分为以下几个层面:

  • 变流器控制策略优化:

     这是核心的优化方向。

    • 参数优化:

       根据电网运行状态和分析结果,动态调整变流器控制器的参数(如虚拟惯量常数、阻尼系数、下垂系数等),使其能够提供最优的支撑效果,并避免发生振荡。例如,在弱电网下增加虚拟惯量,或调整无功电压控制参数以改善电压稳定性。

    • 控制模式切换:

       根据电网的运行模式和需求,智能切换变流器的控制策略。例如,在正常运行时采用最大功率点跟踪,在电网扰动时切换到虚拟同步发电机模式或故障穿越模式。

    • 协同控制:

       多个并网变流器之间的协同控制可以增强整体的电网支撑能力。例如,通过协调控制不同风电场或光伏电站的变流器,共同提供频率或电压支撑。

    • 基于模型预测控制 (MPC) 的优化:

       利用电网和变流器的模型,预测未来的运行状态,并优化控制输入,从而实现最优的支撑性能。

  • 变流器硬件设计优化:

     从硬件层面提升变流器的支撑能力。

    • 增加过载能力:

       设计具有一定过载能力的变流器,以便在电网需要时提供瞬时的大功率或大电流支撑。

    • 提高开关频率:

       提高开关频率可以提高控制带宽,改善变流器的动态响应速度,从而增强其对电网变化的响应能力。

    • 优化滤波电路:

       优化滤波电路设计,降低谐波,并改善变流器的动态性能。

  • 系统层面的优化:

     将变流器作为电网支撑资源进行优化调度。

    • 优化并网点选择:

       合理选择新能源发电站的并网点,以减小对电网的影响并提高变流器支撑效果。

    • 优化新能源发电容量配置:

       根据电网的支撑需求,合理配置不同类型的新能源发电容量,并考虑其变流器的支撑能力。

    • 与传统电源协同运行:

       协调新能源发电单元和传统同步发电机的功能,形成互补的电网支撑体系。

变流器电网支座的优化是一个多目标优化问题,需要在最大化电网支撑能力的同时,满足变流器自身的运行约束(如额定功率、电流限制、电压限制、开关频率等)和电网运行的安全稳定要求。

四、 MAS技术的挑战与未来发展方向

尽管MAS技术为利用并网变流器获得最大允许电网支持提供了新的思路和方法,但在实际应用中仍然面临一些挑战:

  • 精确的电网模型获取:

     精确的电网模型是进行详细分析和优化控制的基础,但在实际电力系统中,电网参数是不断变化的,获取精确的实时模型存在困难。

  • 变流器自身约束的处理:

     变流器的电流限制、电压限制、开关频率等硬件约束对支撑能力的发挥有重要影响,如何在优化控制中有效处理这些约束是一个挑战。

  • 不同类型变流器的协同与兼容性:

     不同厂家、不同技术路线的并网变流器具有不同的控制特性,如何实现其协同工作并确保兼容性是一个复杂的问题。

  • 弱电网条件下的稳定运行:

     在弱电网条件下,变流器与电网的相互作用更为复杂,容易发生谐振和失稳,MAS技术需要在弱电网环境下保证变流器的稳定运行同时提供有效的支撑。

  • 通信与控制的实时性:

     实现动态的电网支撑需要实时获取电网运行信息并快速调整变流器控制策略,这对通信系统和控制系统的实时性提出了高要求。

  • 经济性评估与激励机制:

     为变流器提供的电网支撑服务进行合理的经济性评估,并建立有效的激励机制,鼓励新能源发电企业投资和实施先进的支撑技术,是推广MAS技术的重要前提。

未来的MAS技术研究和发展方向可以包括:

  • 基于人工智能和大数据分析的电网状态感知与MAGS预测:

     利用人工智能和大数据技术,实时分析电网运行数据,更准确地感知电网状态,并预测变流器的MAGS。

  • 基于强化学习的自适应优化控制:

     利用强化学习方法,使变流器能够自主学习和优化其控制策略,以在不断变化的电网环境中实现最优的电网支撑。

  • 考虑不确定性的鲁棒优化控制:

     研究考虑电网参数不确定性和新能源出力波动性的鲁棒优化控制策略,提高变流器电网支座的可靠性。

  • 基于物理信息神经网络 (PINN) 的变流器与电网协同建模与分析:

     利用PINN技术结合物理方程和数据,构建更精确的变流器与电网协同模型,提高分析和预测的准确性。

  • 构建开放的MAGS平台和标准:

     建立统一的MAGS量化标准和评估平台,促进不同厂家、不同类型变流器支撑能力的标准化和互操作性。

  • 研究基于市场的电网支撑服务交易机制:

     探索建立基于市场的电网支撑服务交易机制,为新能源发电企业提供提供电网支撑服务的经济激励。

五、 结论

并网变流器已不再仅仅是功率的注入器,而是现代电力系统中重要的电网支撑资源。一种利用并网变流器获得最大允许电网支持的分析方法——MAS技术,为量化、分析和优化变流器的电网支撑能力提供了有力的工具。通过小信号分析、暂态仿真、功率流分析等方法,可以深入理解变流器电网支座的特性,并确定其最大允许电网支持能力。在此基础上,通过优化控制策略、改进硬件设计和进行系统层面的协调,可以最大程度地发挥变流器的电网支撑潜力,提升电力系统的稳定性和可靠性。

尽管MAS技术面临诸多挑战,但随着电力电子技术、控制技术、信息技术和人工智能技术的不断发展,我们有理由相信,未来的MAS技术将更加成熟和完善,能够为构建高比例新能源电力系统提供坚实的支撑。通过深入研究和广泛应用MAS技术,我们可以充分挖掘并网变流器的潜力,使其成为未来智能电网中不可或缺的关键组成部分。这将对实现能源转型目标、保障国家能源安全具有重要意义。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 李丽霞,姚兴佳,于宏涛,等.直驱式风力发电系统并网变流器研究[J].沈阳理工大学学报, 2012, 31(2):4.DOI:10.3969/j.issn.1003-1251.2012.02.004.

[2] 李洋.主动配电网并网变流器建模仿真技术研究[D].北京交通大学,2017.

[3] 李宇飞,王跃,吴金龙,等.一种分布式发电并网变流器测试装置设计方案及实现[J].电工技术学报, 2015(3):8.DOI:CNKI:SUN:DGJS.0.2015-03-015.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值