【无人车】无人驾驶车辆模型预测控制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着人工智能、计算机视觉、传感器技术以及高性能计算的飞速发展,无人驾驶技术正以前所未有的速度改变着未来的交通出行方式。作为无人驾驶系统中至关重要的一环,决策与控制模块承担着根据环境感知信息规划安全、高效且符合法规的行驶路径并精确执行的任务。在这其中,模型预测控制(Model Predictive Control, MPC)以其对未来动态的预测能力、处理多约束的灵活性以及优越的控制性能,在无人驾驶车辆的轨迹跟踪、路径规划和行为决策等领域展现出巨大的应用潜力,成为当前研究的热点和技术前沿。

模型预测控制,顾名思义,是一种基于模型的、具有预测能力的控制方法。其核心思想在于在每个控制周期内,利用被控对象的动力学模型,预测系统在未来一段时间内的行为轨迹。然后,通过优化算法求解一个开环控制序列,使得预测的未来轨迹在满足各种约束条件(如车辆动力学约束、环境障碍物约束、舒适性约束等)的前提下,最小化某个性能指标(如跟踪误差、能耗、舒适度等)。最后,将优化得到的第一个控制输入作用于被控对象,并在下一个控制周期重复以上过程,形成一个闭环控制系统。这种“预测-优化-执行-滚动”的控制策略,使得MPC能够有效地处理具有复杂动态特性和多种约束的系统,尤其适用于无人驾驶车辆这种高动态、强耦合且受诸多外界因素影响的复杂系统。

将模型预测控制应用于无人驾驶车辆,首先需要建立一个精确的车辆动力学模型。常用的车辆模型包括运动学模型、动力学模型以及更复杂的非线性模型。运动学模型通常假设车辆在低速、平坦路面上行驶,忽略轮胎侧偏、悬架作用等复杂因素,模型简单,计算效率高,适用于低速场景下的路径跟踪。然而,在高速、急转弯或复杂路况下,运动学模型往往无法准确反映车辆的真实行为。动力学模型则考虑了车辆的质量、惯性、轮胎力、空气阻力等因素,能够更精确地描述车辆在高动态条件下的运动,但模型复杂度更高,计算量也更大。更复杂的非线性模型,如考虑悬架系统、转向系统非线性、轮胎非线性等,可以进一步提高模型的精度,但同时也带来了更严峻的实时计算挑战。模型的精度直接影响MPC的预测能力和控制性能,因此在实际应用中需要根据具体的应用场景、计算资源以及性能要求,权衡模型的复杂度和精度。

在建立了车辆模型之后,下一步是定义预测时域和控制时域。预测时域是指模型预测未来行为的时间长度,控制时域是指MPC优化求解控制序列的时间长度。通常情况下,控制时域小于或等于预测时域。预测时域的选择是一个关键问题,过短的预测时域可能导致MPC无法“看到”足够远的未来,无法提前应对复杂的路况和潜在的风险;而过长的预测时域则会显著增加计算量,影响实时性。控制时域的选择也影响着控制的平滑性和鲁棒性,过短的控制时域可能导致控制输出的频繁变化,影响乘坐舒适性。

MPC的核心在于求解一个开环优化问题。这个优化问题通常被表述为一个非线性规划问题(Nonlinear Programming, NLP)。目标函数通常包括轨迹跟踪误差项(如横向偏差、航向角偏差)、控制输入变化率项(用于保证控制的平滑性)、以及其他与性能相关的项(如舒适性、能耗等)。约束条件则涵盖了车辆的动力学约束(如最大加速度、最大转向角速度)、环境约束(如避开障碍物、遵守车道线)、法规约束(如限速)、以及硬件约束(如驱动电机最大扭矩、制动系统最大制动力)。由于车辆动力学模型通常是非线性的,且约束条件复杂,求解这个非线性规划问题具有一定的挑战性。常用的求解方法包括序列二次规划(Sequential Quadratic Programming, SQP)、内点法(Interior-point Method)等。为了满足无人驾驶车辆对实时性的要求,需要高效的优化算法和高性能的计算平台。近年来,基于实时迭代的QP求解器和利用GPU并行计算的优化方法也得到了广泛研究和应用。

将MPC应用于无人驾驶车辆的控制,可以实现以下几个方面的功能:

  1. 轨迹跟踪(Trajectory Tracking):这是MPC在无人驾驶中最基本也是最常见的应用。给定一条预先规划好的参考轨迹,MPC利用车辆模型预测未来的轨迹,并通过优化控制输入(如油门、刹车、转向)使车辆尽可能地沿着参考轨迹行驶,同时满足车辆的动力学约束和舒适性要求。与传统的PID控制等方法相比,MPC能够更好地处理非线性动力学和多约束问题,具有更高的跟踪精度和鲁棒性。

  2. 路径规划与轨迹生成(Path Planning and Trajectory Generation):MPC不仅可以用于轨迹跟踪,还可以与路径规划模块相结合,实现在线路径规划与轨迹生成。在这种应用中,MPC的目标不再是仅仅跟踪给定的轨迹,而是根据当前的环境感知信息和行为决策,实时规划出一条满足约束的最优轨迹。这种方法通常被称为“基于优化的轨迹生成”,能够生成更平滑、更安全的轨迹。

  3. 行为决策与运动规划(Behavior Decision and Motion Planning):MPC还可以用于更高级的行为决策层面。例如,在交叉路口、变道、超车等复杂场景下,MPC可以结合预测的路况信息和博弈理论等方法,预测其他车辆的行为,并优化自身的行驶轨迹,实现安全高效的交互。这使得无人驾驶车辆能够更加智能地应对复杂的交通环境。

尽管模型预测控制在无人驾驶车辆中展现出巨大的潜力,但也面临着一些挑战:

  1. 模型精度与在线辨识:车辆动力学模型是MPC的基础,模型的精度直接影响控制性能。然而,车辆在不同路况、不同速度下,动力学特性会发生变化,模型参数也可能漂移。如何建立高精度的模型并实现在线模型参数辨识,是提高MPC性能的关键。

  2. 实时计算效率:求解非线性规划问题计算量较大,尤其是在预测时域较长、模型复杂的情况下。无人驾驶车辆对控制的实时性要求极高,如何在保证控制性能的前提下,提高优化算法的效率,缩短计算时间,是当前研究的重点之一。

  3. 环境感知与预测不确定性:MPC依赖于对未来环境的感知和预测,然而传感器存在误差,对其他交通参与者的行为预测也存在不确定性。如何在MPC框架下有效地处理这些不确定性,提高系统的鲁棒性,是一个重要的研究方向。

  4. 复杂场景下的约束处理:无人驾驶车辆在复杂的城市环境中行驶,需要应对行人、非机动车、复杂的路口、临时障碍物等多种情况,这使得约束条件变得更加复杂和动态。如何有效地将这些复杂的约束融入MPC框架中,并保证优化问题的可解性和实时性,是一个挑战。

为了应对这些挑战,未来的研究方向包括:

  • 基于学习的MPC

    :利用机器学习技术改进车辆模型的精度,或者直接学习最优控制策略,提高MPC的性能和泛化能力。

  • 分布式MPC

    :将复杂的MPC问题分解为多个子问题,由不同的计算单元并行处理,提高计算效率。

  • 鲁棒MPC

    :考虑模型不确定性和外部干扰,设计鲁棒的MPC控制器,提高系统的抗干扰能力。

  • 非线性优化算法的改进

    :开发更高效、更鲁棒的非线性优化算法,以满足无人驾驶车辆对实时性的需求。

  • 与人工智能技术的融合

    :将MPC与深度学习、强化学习等人工智能技术相结合,实现更智能的行为决策和运动规划。

⛳️ 运行结果

🔗 参考文献

[1] 孙银健.基于模型预测控制的无人驾驶车辆轨迹跟踪控制算法研究[D].北京理工大学,2015.

[2] 邹凯,蔡英凤,陈龙,等.基于增量线性模型预测控制的无人车轨迹跟踪方法[J].汽车技术, 2019(10):7.DOI:10.19620/j.cnki.1000-3703.20190893.

[3] 朱敏,陈慧岩.无人驾驶越野车辆纵向速度跟踪控制试验[J].机械工程学报, 2018(24):7.DOI:10.3901/JME.2018.24.111.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值