✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
波浪能,作为一种清洁、可持续的海洋可再生能源,蕴藏着巨大的开发潜力。它具有能量密度高、分布广泛、预测性相对较强等优点,被认为是未来能源结构的重要补充。波浪能转换器(Wave Energy Converter, WEC)是捕捉波浪能并将其转化为可用电能的关键装置。然而,波浪运动的复杂性、不确定性以及WEC自身 dynamics 的非线性特性,使得 WEC 的高效能量捕获成为一个具有挑战性的课题。传统的控制策略,如线性二次调节(LQR)、比例积分微分(PID)控制等,往往难以有效应对波浪的随机性和装置的动态特性,限制了WEC的能量捕获效率。近年来,基于模型预测控制(Model Predictive Control, MPC)的方法因其能够主动预测系统未来的行为并优化控制输入,为提高WEC的能量捕获效率提供了新的思路和有效的技术途径。
MPC 是一种先进的控制策略,其核心思想是在每个采样时刻,利用一个系统模型对系统未来的动态行为进行预测,并在满足一系列约束条件下,通过在线求解一个优化问题来确定当前的控制输入。这个过程在一个滚动的时间窗口内不断重复进行。与传统控制方法相比,MPC具有处理系统约束的能力、能够主动预测扰动对系统的影响并提前做出应对、以及对多变量系统的协调控制能力等优势,这些特性对于复杂、动态变化的WEC系统尤为重要。
将MPC应用于WEC的研究主要集中在以下几个方面:
首先,精确的模型建立是MPC实施的基础。为了能够准确预测WEC在未来一段时间内的运动和能量吸收情况,需要建立能够反映波浪载荷、WEC 水动力学特性、动力输出系统(Power Take-Off, PTO) dynamics 以及可能存在的系统约束的数学模型。对于波浪载荷的建模,通常采用线性波浪理论,将波浪运动分解为规则波的叠加。然而,真实的波浪是随机的,因此还需要考虑波浪谱对波浪载荷的影响。WEC的水动力学模型通常基于势流理论,通过边界元法(BEM)求解运动方程,得到辐射阻尼、附加质量、兴波阻尼等水动力学系数。PTO系统的建模则取决于其具体形式,可以是液压式、机械式或电气式,需要建立其输入输出特性模型以及效率模型。在MPC的应用中,通常采用简化的模型来进行预测,例如将复杂的非线性模型线性化,或者采用降阶模型,以降低在线求解优化问题的计算负担。对模型的不确定性,例如由于波浪预报误差或模型简化引入的误差,也可以通过鲁棒MPC或随机MPC等方法加以考虑。
其次,优化问题的 formulation 是MPC设计的关键。MPC的目标是在满足各种约束条件(如PTO力的限制、装置运动幅度的限制等)下,最大化WEC在预测时域内的能量吸收。这个优化问题通常被表达为一个二次规划(Quadratic Programming, QP)问题或更一般的非线性规划(Nonlinear Programming, NLP)问题。对于WEC系统,优化变量通常是PTO力或 PTO 扭矩。目标函数通常是最大化PTO系统做功的累积量,或者等价地,最小化WEC与波浪之间的能量交换损失。约束条件则需要考虑PTO的最大输出功率、最大输出力/扭矩、装置的运动范围、甚至PTO系统的动态特性等。为了保证优化问题的可解性和计算效率,需要选择合适的预测时域长度、控制时域长度以及采样周期。预测时域过短可能无法充分利用MPC的预测优势,而过长则会增加计算负担和对模型精度的要求。
第三,MPC在WEC控制中的具体应用策略多样。最常见的应用是 PTO 力控制,通过 MPC 优化 PTO 力,使其与波浪力协同作用,使得 WEC 的运动与最佳能量吸收状态相匹配。例如,MPC 可以用于实现共振控制(Resonant Control),即通过调节 PTO 力矩,使 WEC 的固有频率与波浪频率相匹配,从而最大化能量吸收。此外,MPC 也可以用于实现相位控制(Phase Control),通过精确控制 PTO 力,使得 WEC 的运动相位与波浪运动相位之间保持最佳关系,从而最大化能量吸收。针对不同的 WEC 类型,例如点吸收器、振荡水柱式、摆动式等,MPC 的控制策略和优化问题 formulation 也需要进行相应的调整。
除了直接控制 PTO 系统,MPC 还可以用于更复杂的 WEC 系统集成控制。例如,对于阵列式 WEC,MPC 可以协同控制多个 WEC 单元,通过考虑单元之间的水动力学相互作用,实现整个阵列的能量吸收最大化。MPC 也可以与波浪预报技术相结合,利用未来一段时间内的波浪信息进行更准确的预测和控制。例如,通过相机、雷达等传感器获取波面高度信息,利用波浪预报模型预测未来波浪的特性,并将这些信息作为 MPC 的输入,从而实现更优化的控制。
然而,将MPC应用于WEC也面临一些挑战。首先,在线优化计算的实时性要求较高,特别是在复杂的波浪条件下,需要快速求解大规模的优化问题。这需要高性能的计算平台以及高效的优化算法。其次,波浪预报的不确定性会影响MPC的预测精度,从而影响控制效果。需要发展更精确的波浪预报模型,或者采用鲁棒控制策略来应对预报误差。第三,WEC系统的非线性特性以及各种复杂的物理现象,如粘性阻尼、涡流效应等,使得精确建模变得困难。模型的简化可能会引入误差,影响MPC的性能。需要发展更精确的非线性 MPC 方法或者基于数据驱动的 MPC 方法来解决这些问题。最后,实际的WEC装置通常存在各种物理约束和机械限制,例如 PTO 系统的最大输出力/扭矩、运动幅度的限制等,这些约束需要在 MPC 的优化问题中得到充分考虑。
未来基于MPC的WEC研究方向可以包括:
- 鲁棒MPC和随机MPC在WEC中的应用:
考虑波浪预报的不确定性、模型误差以及系统扰动,提高控制系统的鲁棒性。
- 非线性MPC在WEC中的应用:
考虑WEC系统的非线性特性,采用非线性预测模型和优化方法,进一步提高控制性能。
- 数据驱动的MPC方法:
利用大量的实际运行数据,结合机器学习等技术,构建基于数据的预测模型和优化策略,减少对精确物理模型的依赖。
- 多目标MPC在WEC中的应用:
除了最大化能量吸收,还可以考虑其他控制目标,例如减少装置的载荷、延长装置的使用寿命等。
- 分布式MPC在WEC阵列中的应用:
对于大型WEC阵列,采用分布式MPC可以减少计算负担,提高系统的可扩展性。
- MPC与人工智能技术的融合:
将强化学习、深度学习等人工智能技术与MPC相结合,实现更智能化的WEC控制。
⛳️ 运行结果
🔗 参考文献
[1] 赵彬,杨立,崔晓.基于波高预测的波浪能回收装置最优控制的研究[J].机床与液压, 2020, 48(12):7.DOI:10.3969/j.issn.1001-3881.2020.12.016.
[2] Zhong Q , Yeung R W .基于模型预测的波能转换装置阵列的控制策略(英文)[J].Journal of Marine Science and Application, 2019, 18(01):30-41.DOI:CNKI:SUN:HEBD.0.2019-01-003.
[3] Qian,Zhong,Ronald,et al.基于模型预测的波能转换装置阵列的控制策略[J].船舶与海洋工程学报:英文版, 2019, 18(1):12.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇