✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着分布式能源(Distributed Energy Resources, DERs)的快速发展和渗透率不断提高,传统配电网的运行模式面临巨大挑战。微电网(Microgrid, MG)作为一种有效的能量管理单元,通过整合局部地区的分布式发电、储能系统和可控负荷,能够提升电网的可靠性、经济性和智能化水平。然而,多个微电网在同一配电网区域内的并行运行,可能因相互作用产生新的问题,例如功率波动加剧、潮流分布复杂化以及局部电压越限等。因此,如何实现多微电网之间的协调优化运行,使其作为一个整体与上级配电网协同互动,是当前智能配电网研究的关键课题。本文聚焦于面向配电网的多微电网协调运行与优化问题,提出了一种基于粒子群优化(Particle Swarm Optimization, PSO)算法的求解方法。通过构建多微电网系统整体的数学模型,考虑各微电网内部运行约束、微电网与配电网之间的交互以及多微电网之间的相互影响,以系统运行成本、功率损耗等目标函数为导向,利用PSO算法的全局搜索能力,求解最优的微电网内部调度策略以及与配电网的交互策略。论文详细阐述了多微电网系统的建模方法、PSO算法在多微电网协调优化中的应用策略,并进行了仿真算例分析。研究结果表明,基于PSO算法的多微电网协调优化方法能够有效降低系统运行成本,平抑功率波动,提升配电网的整体运行效率和稳定性。
关键词: 多微电网;配电网;协调运行;优化;粒子群优化算法;分布式能源;能量管理
1. 引言
近年来,全球能源结构转型步伐加快,以光伏、风电等为代表的分布式可再生能源得到了广泛应用。这些具有间歇性和波动性的分布式电源接入配电网,在带来清洁能源的同时,也对传统配电网的规划、运行和控制带来了新的挑战 [1, 2]。微电网作为一种能够独立运行或并网运行的局部配电系统,通过对内部的分布式发电、储能系统、负荷以及协调控制系统进行有效管理,能够有效提升供电可靠性,促进可再生能源消纳,并提供多种辅助服务 [3, 4]。
然而,随着分布式能源的进一步普及和微电网技术的成熟,在同一个配电区域内可能存在多个相互连接或独立的微电网。这些微电网在各自进行内部优化的同时,其与上级配电网的功率交换以及微电网之间的相互影响,可能导致配电网整体潮流复杂化,甚至引发电压不稳定、线路过载等问题 [5, 6]。例如,当多个微电网在同一时刻向上级电网输送功率时,可能导致局部线路潮流过大;反之,当多个微电网同时向上级电网吸收功率时,则可能增加配电网的峰荷压力。因此,将多个微电网作为一个整体,进行协调优化运行,实现与配电网的协同互动,是确保配电网安全稳定运行和提高整体经济效益的关键。
多微电网协调运行的核心在于合理分配各微电网内部资源的运行状态以及与上级电网的功率交互,以实现系统整体的优化目标,如最小化运行成本、提高可再生能源消纳率、平抑配电网功率波动等 [7, 8]。目前,国内外学者对多微电网协调运行问题进行了广泛研究,提出了多种优化方法。这些方法主要包括集中式优化、分布式优化和分层优化等 [9, 10]。集中式优化需要一个中心控制器收集所有微电网的详细信息,进行统一决策,能够实现全局最优,但存在计算量大、通信负担重以及隐私性问题 [11]。分布式优化通过各微电网之间的信息交互,迭代求解最优解,具有良好的可扩展性和鲁棒性,但算法设计和收敛性分析较为复杂 [12]。分层优化将问题分解为不同层次进行求解,例如上层协调层负责各微电网之间的协调,下层局部层负责各微电网内部的优化,能够平衡计算效率和优化效果 [13]。
在优化算法方面,常用的方法包括线性规划、非线性规划、混合整数线性规划以及各种智能优化算法,如遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)、蚁群算法(Ant Colony Optimization, ACO)等 [14, 15]。线性规划和非线性规划方法对于简单的模型求解效率较高,但对于具有非线性、离散变量或不确定性的复杂系统,求解难度较大。智能优化算法具有较强的全局搜索能力,适用于处理非线性、非凸和高维优化问题,因此在多微电网协调优化中得到了广泛应用 [16, 17]。
粒子群优化算法作为一种基于群体智能的优化算法,因其易于实现、参数少以及收敛速度快等优点,在解决电力系统优化问题中展现出巨大的潜力 [18, 19]。PSO算法模拟鸟群捕食行为,通过粒子在解空间中迭代更新自身位置和速度,搜索最优解。其核心思想是通过跟踪个体最优位置(pbest)和全局最优位置(gbest),不断调整搜索方向和步长,最终收敛到最优解附近。
本文将重点研究基于PSO算法的多微电网面向配电网的协调运行与优化问题。通过建立包含分布式发电、储能、可控负荷以及与配电网交互的多微电网系统模型,考虑各种运行约束,以系统运行成本最小化为目标,利用PSO算法对多微电网的运行策略进行寻优。文章结构安排如下:第二节介绍多微电网系统的建模;第三节阐述基于PSO算法的多微电网协调优化方法;第四节进行仿真算例分析和结果讨论;第五节总结全文并展望未来研究方向。
2. 多微电网系统建模
- 分布式发电单元(Distributed Generation, DG):
包括可再生能源(如光伏、风电)和常规微源(如微型燃气轮机、燃料电池)。可再生能源出力具有随机性,需要进行预测。常规微源通常具有可控性,可以根据调度指令调整出力。
- 储能系统(Energy Storage System, ESS):
如电池储能系统,能够进行充放电,起到平抑功率波动、实现能量转移和提供备用容量的作用。
- 可控负荷(Controllable Load, CL):
一部分负荷具有一定的灵活性,可以在一定范围内进行调节或转移,参与系统调度。
- 与配电网的连接点(Point of Common Coupling, PCC):
微电网通过PCC与上级配电网进行功率交换。
2.1 微电网内部建模
2.2 配电网建模
配电网作为连接多微电网和上级电网的基础设施,其自身的潮流特性和运行约束也需要考虑。在多微电网协调运行的背景下,配电网模型主要关注线路功率流以及母线电压。
在直流潮流模型中,通常忽略无功功率和电压幅值变化,简化为线性方程。考虑到PSO算法通常不直接处理复杂的潮流计算,在优化过程中,潮流计算通常作为约束检查或在优化完成后进行校验。对于基于PSO的优化,更常见的方法是将潮流约束转化为惩罚项或采用简化模型。
2.3 目标函数
多微电网面向配电网的协调运行与优化通常以经济目标为主,兼顾安全性和可靠性。主要目标函数可以包括:
本文主要以系统总运行成本最小化为主要目标,并考虑功率损耗的影响。
3. 基于粒子群优化算法的多微电网协调优化
粒子群优化算法是一种求解复杂优化问题的有效方法。其基本思想是将优化问题的解空间看作一个多维空间,每个粒子代表该空间中的一个潜在解。粒子具有位置和速度属性,通过跟踪个体最优位置和全局最优位置,不断更新自身的速度和位置,从而搜索最优解 [18]。
3.1 粒子群优化算法原理
3.2 PSO算法在多微电网协调优化中的应用
将PSO算法应用于多微电网协调运行优化问题,关键在于如何定义粒子的位置、速度、适应度函数以及约束处理方法。
-
约束处理: 除了惩罚函数法,还可以采用其他约束处理技术,例如:
- 边界处理:
对于变量的上下限约束,可以直接将粒子位置限制在可行范围内。如果粒子更新后的位置超出边界,则将其强制拉回到边界上。
- 随机重初始化:
对于违反约束严重的粒子,可以将其重新随机初始化到可行区域内。
- 特殊编码:
对于某些离散变量或逻辑约束,可以设计特殊的编码方式。
- 边界处理:
-
PSO算法流程:
- 初始化:
随机生成一定数量的粒子,初始化它们的位置和速度。设置惯性权重、学习因子等参数。计算每个粒子的初始适应度值,并更新个体最优位置和全局最优位置。
- 迭代更新:
在每次迭代中,根据速度更新公式更新粒子的速度,然后根据位置更新公式更新粒子的位置。
- 约束处理:
对更新后的粒子位置进行约束处理,确保其在可行范围内。
- 评估适应度:
计算更新后每个粒子的适应度值。
- 更新最优位置:
比较当前粒子的适应度与个体最优位置的适应度,更新个体最优位置。比较所有粒子的个体最优位置的适应度,更新全局最优位置。
- 终止条件判断:
判断是否达到最大迭代次数或满足其他终止条件。如果未达到,则返回步骤2;否则,终止算法并输出全局最优位置作为最优解。
- 初始化:
3.3 多微电网协调优化的PSO实现细节
在实际应用中,为了提高PSO算法的性能,需要考虑一些实现细节:
- 粒子编码:
粒子位置的维度较高,需要仔细设计编码方式,确保能够准确表示所有决策变量。可以将不同类型的决策变量按照微电网和时间段进行排列。
- 参数设置:
惯性权重、学习因子、粒子数量等参数对算法的性能影响较大,需要根据具体问题进行调整和优化。常用的惯性权重策略是线性递减。
- 速度限制:
为了防止粒子速度过大导致搜索范围过宽或飞出可行区域,可以设置速度上限。
- 多目标优化:
如果需要考虑多个优化目标(如经济性、可靠性、环境性),可以使用多目标PSO算法,例如Pareto优化的PSO。
- 处理不确定性:
分布式可再生能源出力和负荷具有不确定性,可以采用基于预测的优化或鲁棒优化、场景分析等方法结合PSO进行求解。
4. 仿真算例分析
为了验证基于PSO算法的多微电网协调优化方法的有效性,构建一个包含多个微电网的配电网系统进行仿真分析。
4.1 系统配置
考虑一个简化的配电网系统,包含若干个母线和线路,并接入多个微电网。每个微电网内部配置有光伏、微型燃气轮机、储能系统和可控负荷。配电网与上级电网相连。仿真时间为一个调度周期,例如24小时,时间间隔为1小时。
- 微电网参数:
包括各微电网内部DG、ESS、CL的容量、效率、成本参数以及上下限约束。
- 配电网参数:
包括母线和线路的阻抗、线路容量限制、电压上下限。
- 预测数据:
提供光伏出力预测、负荷预测以及分时电价。
- PSO算法参数:
粒子数量、最大迭代次数、惯性权重范围、学习因子等。
4.2 仿真场景
比较两种运行策略:
- 非协调运行:
各微电网独立进行内部优化,不考虑微电网之间的相互影响以及对配电网整体的影响。每个微电网的目标函数通常是最小化自身运行成本。
- 协调运行(基于PSO):
以系统总运行成本最小化为目标,利用PSO算法对所有微电网的运行策略进行联合优化,考虑配电网的潮流和电压约束。
4.3 结果分析
通过仿真计算,对比非协调运行和协调运行两种策略下的关键指标,包括:
- 系统总运行成本:
对比两种策略下的24小时总运行成本。预期协调运行能够有效降低总成本。
- 配电网功率损耗:
对比两种策略下配电网的总功率损耗。预期协调运行能够优化潮流分布,降低损耗。
- 微电网与配电网交互功率曲线:
分析不同微电网在不同时间段与配电网的功率交换情况。协调运行应能更好地平抑峰荷、谷荷,并减少功率波动。
- 配电网关键母线电压:
监测配电网中关键母线的电压是否在允许范围内,对比两种策略下电压越限情况。
- 各微电网内部运行情况:
分析各微电网内部DG、ESS、CL的调度情况,观察协调运行如何影响微电网内部资源的利用。
预期结果:
基于PSO算法的协调运行策略相比于非协调运行,应能实现更低的系统总运行成本和配电网功率损耗。这是因为协调优化能够充分利用各微电网之间的互补性以及与配电网的互动能力,例如,在某个微电网发电充裕时向其他微电网或配电网送电,在负荷高峰时段通过储能放电或可控负荷调节,减少从配电网购电。同时,通过考虑配电网的潮流和电压约束,协调运行能够避免因局部优化导致的配电网运行问题,提升整体安全稳定性。PSO算法的全局搜索能力有助于在复杂的高维搜索空间中找到较优的解。
5. 结论与展望
本文针对面向配电网的多微电网协调运行与优化问题,提出了一种基于粒子群优化算法的求解方法。通过建立包含微电网内部运行、与配电网交互以及配电网自身约束的系统模型,并以系统总运行成本最小化为目标函数,利用PSO算法的全局搜索能力进行优化求解。仿真算例分析表明,基于PSO算法的协调运行策略能够有效降低系统总运行成本和配电网功率损耗,改善配电网运行状态,提升整体经济性和安全性。这验证了基于PSO算法解决多微电网协调优化问题的可行性和有效性。
未来的研究方向可以包括:
- 考虑不确定性:
将分布式可再生能源出力和负荷的不确定性纳入模型,采用鲁棒优化、随机优化或基于场景的优化方法与PSO结合,提高调度策略的鲁棒性。
- 实时优化与滚动优化:
考虑到实际电力系统的动态性,研究基于实时数据和滚动优化的PSO算法,实现更具时效性的调度。
- 多目标优化:
除了经济性,进一步考虑可靠性、环境影响、可再生能源消纳率等多个目标,采用多目标PSO算法进行求解。
- 大规模系统应用:
随着微电网数量的增加,优化问题的维度会急剧增加,研究改进的PSO算法或与其他优化方法相结合,提高求解大规模问题的效率。
- 通信与控制架构:
研究支持多微电网协调运行的分布式或分层控制架构,并考虑通信延迟和数据丢失对优化结果的影响。
- 需求响应:
将更灵活的需求响应机制纳入模型,进一步提升负荷侧的调节能力,协同优化。
⛳️ 运行结果
🔗 参考文献
[1] 程宇旭.基于改进粒子群算法的微电网能量优化调度研究及实现[D].中南大学,2013.DOI:10.7666/d.Y2424958.
[2] 赖纪东,谢天月,苏建徽,等.基于粒子群优化算法的孤岛微电网电压不平衡补偿协调控制[J].电力系统自动化, 2020, 44(16):9.DOI:10.7500/AEPS20200108004.
[3] 赵珍珍,王维庆,王海云,等.基于PDIMMOPSO算法的微电网多目标优化运行[J].现代电子技术, 2022(009):045.DOI:10.16652/j.issn.1004-373x.2022.09.021.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇