人脸识别模型(学习并识别自己组合的小数据集)

浅层网络作业,构建浅层人脸识别网络,从同学中的随机选出10-15人作为样本库,随机选择5-10人测试,统计识别率。

本实验的目标是实现一个基于人脸识别的系统,通过使用卷积神经网络(CNN)和面部特征提取技术,训练并测试一个人脸识别模型。通过比较所识别的人脸与预先存储的图像进行匹配,以验证模型的准确性和实用性。

放自己数据集改个路径就行,

训练模型:python train.py
测试单张图片:python predict.py

结果大概是这样的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值