python学习笔记(3)

python学习笔记(3)

一、 函数

1、函数参数

位置参数
默认参数

调用函数时,默认参数的值如果没有传入,则被认为是默认值。
默认参数一定要放在位置参数 后面,不然程序会报错。
Python 允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值

def printinfo(name, age):
    print('Name:{0},Age:{1}'.format(name, age))


printinfo(age=8, name='小马')  # Name:小马,Age:8
可变参数

顾名思义,可变参数就是传入的参数个数是可变的,可以是 0, 1, 2 到任意个,是不定长的参数。*args 可变参数,可以是从零个到任意个,自动组装成元组。

def printinfo(arg1, *args):
    print(arg1)
    for var in args:
        print(var)


printinfo(10)  # 10
printinfo(70, 60, 50)
# 70
# 60
# 50
关键字参数

**kw - 关键字参数,可以是从零个到任意个,自动组装成字典。

def printinfo(arg1, *args, **kwargs):
    print(arg1)
    print(args)
    print(kwargs)


printinfo(70, 60, 50)
# 70
# (60, 50)
# {}
printinfo(70, 60, 50, a=1, b=2)
# 70
# (60, 50)
# {'a': 1, 'b': 2}
命名关键字参数

*, nkw - 命名关键字参数,用户想要输入的关键字参数,定义方式是在nkw 前面加个分隔符 *

def printinfo(arg1, *, nkw, **kwargs):
    print(arg1)
    print(nkw)
    print(kwargs)


printinfo(70, nkw=10, a=1, b=2)
# 70
# 10
# {'a': 1, 'b': 2}

printinfo(70, 10, a=1, b=2)
# TypeError: printinfo() takes 1 positional argument but 2 were given
参数组合

参数定义的顺序必须是:

位置参数、默认参数、可变参数和关键字参数。
位置参数、默认参数、命名关键字参数和关键字参数。

2、函数的返回值

def add(a, b):
    return a + b
print(add([1, 2, 3], [4, 5, 6]))  # [1, 2, 3, 4, 5, 6]
def back():
    return 1, '小马的程序人生', 3.14


print(back())  # (1, '小马的程序人生', 3.14)

3、变量作用域

  • Python 中,程序的变量并不是在哪个位置都可以访问的,访问权限决定于这个变量是在哪里赋值的。
  • 定义在函数内部的变量拥有局部作用域,该变量称为局部变量。
  • 定义在函数外部的变量拥有全局作用域,该变量称为全局变量。
  • 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。
  • 当内部作用域想修改外部作用域的变量时,就要用到global和nonlocal关键字了。
num = 1


def fun1():
    global num  # 需要使用 global 关键字声明
    print(num)  # 1
    num = 123
    print(num)  # 123


fun1()
print(num)  # 123
闭包
  • 是函数式编程的一个重要的语法结构,是一种特殊的内嵌函数。
  • 如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。
  • 通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域。
def funX(x):
    def funY(y):
        return x * y

    return funY


i = funX(8)
print(type(i))  # <class 'function'>
print(i(5))  # 40
  • 闭包的返回值通常是函数。
def make_counter(init):
    counter = [init]

    def inc(): counter[0] += 1

    def dec(): counter[0] -= 1

    def get(): return counter[0]

    def reset(): counter[0] = init

    return inc, dec, get, reset


inc, dec, get, reset = make_counter(0)
inc()
inc()
inc()
print(get())  # 3
dec()
print(get())  # 2
reset()
print(get())  # 0
def outer():
    num = 10

    def inner():
        nonlocal num  # nonlocal关键字声明
        num = 100
        print(num)

    inner()
    print(num)


outer()

# 100
# 100
递归
  • 如果一个函数在内部调用自身本身,这个函数就是递归函数。
def recur_fibo(n):
    if n <= 1:
        return n
    return recur_fibo(n - 1) + recur_fibo(n - 2)


lst = list()
for k in range(11):
    lst.append(recur_fibo(k))
print(lst)  
# [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

设置递归的层数,Python默认递归层数为 100

import sys

sys.setrecursionlimit(1000)

二、Lambda 表达式

1、匿名函数的定义

lambda argument_list: expression

  • lambda - 定义匿名函数的关键词。
  • argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。
  • :- 冒号,在函数参数和表达式中间要加个冒号。
    expression - 只是一个表达式,输入函数参数,输出一些值。
  • expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。
  • 匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。
def sqr(x):
    return x ** 2


print(sqr)
# <function sqr at 0x000000BABD3A4400>

y = [sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

lbd_sqr = lambda x: x ** 2
print(lbd_sqr)
# <function <lambda> at 0x000000BABB6AC1E0>

y = [lbd_sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]


sumary = lambda arg1, arg2: arg1 + arg2
print(sumary(10, 20))  # 30

func = lambda *args: sum(args)
print(func(1, 2, 3, 4, 5))  # 15

2、匿名函数的应用

filter(function, iterable) 过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(list(templist))  # [1, 3, 5, 7, 9]

map(function, *iterables) 根据提供的函数对指定序列做映射

m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(list(m1))  
# [1, 4, 9, 16, 25]

m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))  
# [3, 7, 11, 15, 19]

自己定义高阶函数。

def apply_to_list(fun, some_list):
    return fun(some_list)

lst = [1, 2, 3, 4, 5]
print(apply_to_list(sum, lst))
# 15

print(apply_to_list(len, lst))
# 5

print(apply_to_list(lambda x: sum(x) / len(x), lst))
# 3.0

三、类与对象

  • 封装:信息隐蔽技术
  • 继承:子类自动共享父类之间数据和方法的机制
class MyList(list):
    pass


lst = MyList([1, 5, 2, 7, 8])
lst.append(9)
lst.sort()
print(lst)

# [1, 2, 5, 7, 8, 9]
  • 多态:不同对象对同一方法响应不同的行动
class Animal:
    def run(self):
        raise AttributeError('子类必须实现这个方法')


class People(Animal):
    def run(self):
        print('人正在走')


class Pig(Animal):
    def run(self):
        print('pig is walking')


class Dog(Animal):
    def run(self):
        print('dog is running')


def func(animal):
    animal.run()


func(Pig())
# pig is walking
  • Python 的 self 相当于 C++ 的 this 指针。
  • 类的方法与普通的函数只有一个特别的区别 —— 它们必须有一个额外的第一个参数名称(对应于该实例,即该对象本身),按照惯例它的名称是 self。在调用方法时,我们无需明确提供与参数 self 相对应的参数。
class Ball:
    def setName(self, name):
        self.name = name

    def kick(self):
        print("我叫%s,该死的,谁踢我..." % self.name)


a = Ball()
a.setName("球A")
b = Ball()
b.setName("球B")
c = Ball()
c.setName("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...

1、python的魔法方法

类有一个名为__init__(self[, param1, param2…])的魔法方法,该方法在类实例化时会自动调用。

class Ball:
    def __init__(self, name):
        self.name = name

    def kick(self):
        print("我叫%s,该死的,谁踢我..." % self.name)


a = Ball("球A")
b = Ball("球B")
c = Ball("球C")
a.kick()
# 我叫球A,该死的,谁踢我...
b.kick()
# 我叫球B,该死的,谁踢我...

2、公有和私有

在 Python 中定义私有变量只需要在变量名或函数名前加上“__”两个下划线,那么这个函数或变量就会为私有的了。

class JustCounter:
    __secretCount = 0  # 私有变量
    publicCount = 0  # 公开变量

    def count(self):
        self.__secretCount += 1
        self.publicCount += 1
        print(self.__secretCount)


counter = JustCounter()
counter.count()  # 1
counter.count()  # 2
print(counter.publicCount)  # 2

# Python的私有为伪私有
print(counter._JustCounter__secretCount)  # 2 
print(counter.__secretCount)  
# AttributeError: 'JustCounter' object has no attribute '__secretCount'
class Site:
    def __init__(self, name, url):
        self.name = name  # public
        self.__url = url  # private

    def who(self):
        print('name  : ', self.name)
        print('url : ', self.__url)

    def __foo(self):  # 私有方法
        print('这是私有方法')

    def foo(self):  # 公共方法
        print('这是公共方法')
        self.__foo()


x = Site('老马的程序人生', 'https://blog.csdn.net/LSGO_MYP')
x.who()
# name  :  老马的程序人生
# url :  https://blog.csdn.net/LSGO_MYP

x.foo()
# 这是公共方法
# 这是私有方法

x.__foo()
# AttributeError: 'Site' object has no attribute '__foo'

3、继承

如果子类中定义与父类同名的方法或属性,则会自动覆盖父类对应的方法或属性。

# 类定义
class people:
    # 定义基本属性
    name = ''
    age = 0
    # 定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0

    # 定义构造方法
    def __init__(self, n, a, w):
        self.name = n
        self.age = a
        self.__weight = w

    def speak(self):
        print("%s 说: 我 %d 岁。" % (self.name, self.age))


# 单继承示例
class student(people):
    grade = ''

    def __init__(self, n, a, w, g):
        # 调用父类的构函
        people.__init__(self, n, a, w)
        self.grade = g

    # 覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级" % (self.name, self.age, self.grade))


s = student('小马的程序人生', 10, 60, 3)
s.speak()
# 小马的程序人生 说: 我 10 岁了,我在读 3 年级

注意:如果上面的程序去掉:people.init(self, n, a, w),则输出:说: 我 0 岁了,我在读 3 年级,因为子类的构造方法把父类的构造方法覆盖了。

import random

class Fish:
    def __init__(self):
        self.x = random.randint(0, 10)
        self.y = random.randint(0, 10)

    def move(self):
        self.x -= 1
        print("我的位置", self.x, self.y)


class GoldFish(Fish):  # 金鱼
    pass


class Carp(Fish):  # 鲤鱼
    pass


class Salmon(Fish):  # 三文鱼
    pass


class Shark(Fish):  # 鲨鱼
    def __init__(self):
        self.hungry = True

    def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True


g = GoldFish()
g.move()  # 我的位置 9 4
s = Shark()
s.eat() # 吃货的梦想就是天天有得吃!
s.move()  
# AttributeError: 'Shark' object has no attribute 'x'

解决方案:

  • 调用未绑定的父类方法Fish.init(self)
class Shark(Fish):  # 鲨鱼
    def __init__(self):
        Fish.__init__(self)
        self.hungry = True

    def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True
  • 使用super函数super().init()
class Shark(Fish):  # 鲨鱼
    def __init__(self):
        super().__init__()
        self.hungry = True

    def eat(self):
        if self.hungry:
            print("吃货的梦想就是天天有得吃!")
            self.hungry = False
        else:
            print("太撑了,吃不下了!")
            self.hungry = True

需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,Python 从左至右搜索,即方法在子类中未找到时,从左到右查找父类中是否包含方法

4、组合

class Turtle:
    def __init__(self, x):
        self.num = x


class Fish:
    def __init__(self, x):
        self.num = x


class Pool:
    def __init__(self, x, y):
        self.turtle = Turtle(x)
        self.fish = Fish(y)

    def print_num(self):
        print("水池里面有乌龟%s只,小鱼%s条" % (self.turtle.num, self.fish.num))


p = Pool(2, 3)
p.print_num()
# 水池里面有乌龟2只,小鱼3条

注意:属性与方法名相同,属性会覆盖方法

class A:
    def x(self):
        print('x_man')


aa = A()
aa.x()  # x_man
aa.x = 1
print(aa.x)  # 1
aa.x()
# TypeError: 'int' object is not callable

5、绑定

Python 严格要求方法需要有实例才能被调用,这种限制其实就是 Python 所谓的绑定概念。
Python 对象的数据属性通常存储在名为.__ dict__的字典中,我们可以直接访问__dict__,或利用 Python 的内置函数vars()获取.__ dict__。

class CC:
    def setXY(self, x, y):
        self.x = x
        self.y = y

    def printXY(self):
        print(self.x, self.y)


dd = CC()
print(dd.__dict__)
# {}

print(vars(dd))
# {}

print(CC.__dict__)
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000C3473DA048>, 'printXY': <function CC.printXY at 0x000000C3473C4F28>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}

dd.setXY(4, 5)
print(dd.__dict__)
# {'x': 4, 'y': 5}

print(vars(CC))
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000632CA9B048>, 'printXY': <function CC.printXY at 0x000000632CA83048>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}

print(CC.__dict__)
# {'__module__': '__main__', 'setXY': <function CC.setXY at 0x000000632CA9B048>, 'printXY': <function CC.printXY at 0x000000632CA83048>, '__dict__': <attribute '__dict__' of 'CC' objects>, '__weakref__': <attribute '__weakref__' of 'CC' objects>, '__doc__': None}

6、一些相关的内置函数

issubclass
  • issubclass(class, classinfo) 方法用于判断参数 class 是否是类型参数 classinfo 的子类。
  • 一个类被认为是其自身的子类。
  • classinfo可以是类对象的元组,只要class是其中任何一个候选类的子类,则返回True。
class A:
    pass


class B(A):
    pass


print(issubclass(B, A))  # True
print(issubclass(B, B))  # True
print(issubclass(A, B))  # False
print(issubclass(B, object))  # True
isinstance
  • isinstance(object, classinfo) 方法用于判断一个对象是否是一个已知的类型,类似type()。
  • type()不会认为子类是一种父类类型,不考虑继承关系。
  • isinstance()会认为子类是一种父类类型,考虑继承关系。
  • 如果第一个参数不是对象,则永远返回False。
  • 如果第二个参数不是类或者由类对象组成的元组,会抛出一个TypeError异常。
a = 2
print(isinstance(a, int))  # True
print(isinstance(a, str))  # False
print(isinstance(a, (str, int, list)))  # True


class A:
    pass


class B(A):
    pass


print(isinstance(A(), A))  # True
print(type(A()) == A)  # True
print(isinstance(B(), A))  # True
print(type(B()) == A)  # False
hasattr

hasattr(object, name)用于判断对象是否包含对应的属性。

class Coordinate:
    x = 10
    y = -5
    z = 0


point1 = Coordinate()
print(hasattr(point1, 'x'))  # True
print(hasattr(point1, 'y'))  # True
print(hasattr(point1, 'z'))  # True
print(hasattr(point1, 'no'))  # False
getattr

getattr(object, name[, default])用于返回一个对象属性值。

class A(object):
    bar = 1


a = A()
print(getattr(a, 'bar'))  # 1
print(getattr(a, 'bar2', 3))  # 3
print(getattr(a, 'bar2'))
# AttributeError: 'A' object has no attribute 'bar2'
class A(object):
    def set(self, a, b):
33        x = a
        a = b
        b = x
        print(a, b)


a = A()
c = getattr(a, 'set')
c(a='1', b='2')  # 2 1

setattr

setattr(object, name, value)对应函数 getattr(),用于设置属性值,该属性不一定是存在的

class A(object):
    bar = 1


a = A()
print(getattr(a, 'bar'))  # 1
setattr(a, 'bar', 5)
print(a.bar)  # 5
setattr(a, "age", 28)
print(a.age)  # 28
delattr

delattr(object, name)用于删除属性。

class Coordinate:
    x = 10
    y = -5
    z = 0


point1 = Coordinate()

print('x = ', point1.x)  # x =  10
print('y = ', point1.y)  # y =  -5
print('z = ', point1.z)  # z =  0

delattr(Coordinate, 'z')

print('--删除 z 属性后--')  # --删除 z 属性后--
print('x = ', point1.x)  # x =  10
print('y = ', point1.y)  # y =  -5

# 触发错误
print('z = ', point1.z)
# AttributeError: 'Coordinate' object has no attribute 'z'
property ???(不理解)

class property([fget[, fset[, fdel[, doc]]]])用于在新式类中返回属性值。
fget – 获取属性值的函数
fset – 设置属性值的函数
fdel – 删除属性值函数
doc – 属性描述信息

四、魔法方法

1、基本的魔法方法

init(self[, …]) 构造器
class Rectangle:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def getPeri(self):
        return (self.x + self.y) * 2

    def getArea(self):
        return self.x * self.y


rect = Rectangle(4, 5)
print(rect.getPeri())  # 18
print(rect.getArea())  # 20
new(cls[, …])

在一个对象实例化的时候所调用的第一个方法,在调用__init__初始化前,先调用__new__。
new__至少要有一个参数cls,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__init
new__对当前类进行了实例化,并将实例返回,传给__init__的self。但是,执行了__new,并不一定会进入__init__,只有__new__返回了,当前类cls的实例,当前类的__init__才会进入

class A(object):
    def __init__(self, value):
        print("into A __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into A __new__")
        print(cls)
        return object.__new__(cls)


class B(A):
    def __init__(self, value):
        print("into B __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into B __new__")
        print(cls)
        return super().__new__(cls, *args, **kwargs)


b = B(10)

# 结果:
# into B __new__
# <class '__main__.B'>
# into A __new__
# <class '__main__.B'>
# into B __init__

class A(object):
    def __init__(self, value):
        print("into A __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into A __new__")
        print(cls)
        return object.__new__(cls)


class B(A):
    def __init__(self, value):
        print("into B __init__")
        self.value = value

    def __new__(cls, *args, **kwargs):
        print("into B __new__")
        print(cls)
        return super().__new__(A, *args, **kwargs)  # 改动了cls变为A


b = B(10)

# 结果:
# into B __new__
# <class '__main__.B'>
# into A __new__
# <class '__main__.A'>

利用__new__实现单例模式。

class Earth:
    pass


a = Earth()
print(id(a))  # 260728291456
b = Earth()
print(id(b))  # 260728291624

class Earth:
    __instance = None  # 定义一个类属性做判断

    def __new__(cls):
        if cls.__instance is None:
            cls.__instance = object.__new__(cls)
            return cls.__instance
        else:
            return cls.__instance


a = Earth()
print(id(a))  # 512320401648
b = Earth()
print(id(b))  # 512320401648

__new__方法主要是当你继承一些不可变的 class 时(比如int, str, tuple), 提供给你一个自定义这些类的实例化过程的途径。

del(self)

del(self) 析构器,当一个对象将要被系统回收之时调用的方法。
Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。

大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环

在这里插入代码片
class C(object):
    def __init__(self):
        print('into C __init__')

    def __del__(self):
        print('into C __del__')


c1 = C()
# into C __init__
c2 = c1
c3 = c2
del c3
del c2
del c1
# into C __del__
str(self)

当你打印一个对象的时候,触发__str__
当你使用%s格式化的时候,触发__str__
str强转数据类型的时候,触发__str__
str(self) 的返回结果可读性强

repr(self)

repr是str的备胎
有__str__的时候执行__str__,没有实现__str__的时候,执行__repr__
repr(obj)内置函数对应的结果是__repr__的返回值
当你使用%r格式化的时候 触发__repr__
repr(self) 的返回结果应更准确

class Cat:
    """定义一个猫类"""

    def __init__(self, new_name, new_age):
        """在创建完对象之后 会自动调用, 它完成对象的初始化的功能"""
        self.name = new_name
        self.age = new_age

    def __str__(self):
        """返回一个对象的描述信息"""
        return "名字是:%s , 年龄是:%d" % (self.name, self.age)
        
    def __repr__(self):
        """返回一个对象的描述信息"""
        return "Cat:(%s,%d)" % (self.name, self.age)

    def eat(self):
        print("%s在吃鱼...." % self.name)

    def drink(self):
        print("%s在喝可乐..." % self.name)

    def introduce(self):
        print("名字是:%s, 年龄是:%d" % (self.name, self.age))


# 创建了一个对象
tom = Cat("汤姆", 30)
print(tom)  # 名字是:汤姆 , 年龄是:30
print(str(tom)) # 名字是:汤姆 , 年龄是:30
print(repr(tom))  # Cat:(汤姆,30)
tom.eat()  # 汤姆在吃鱼....
tom.introduce()  # 名字是:汤姆, 年龄是:30
import datetime

today = datetime.date.today()
print(str(today))  # 2019-10-11
print(repr(today))  # datetime.date(2019, 10, 11)
print('%s' %today)  # 2019-10-11
print('%r' %today)  # datetime.date(2019, 10, 11)

2、算术运算符

类型工厂函数,指的是“不通过类而是通过函数来创建对象”。

class C:
    pass


print(type(len))  # <class 'builtin_function_or_method'>
print(type(dir))  # <class 'builtin_function_or_method'>
print(type(int))  # <class 'type'>
print(type(list))  # <class 'type'>
print(type(tuple))  # <class 'type'>
print(type(C))  # <class 'type'>
print(int('123'))  # 123

# 这个例子中list工厂函数把一个元祖对象加工成了一个列表对象。
print(list((1, 2, 3)))  # [1, 2, 3]
add(self, other)

定义加法的行为:+

sub(self, other)

定义减法的行为:-

class MyClass:

    def __init__(self, height, weight):
        self.height = height
        self.weight = weight

    # 两个对象的长相加,宽不变.返回一个新的类
    def __add__(self, others):
        return MyClass(self.height + others.height, self.weight + others.weight)

    # 两个对象的宽相减,长不变.返回一个新的类
    def __sub__(self, others):
        return MyClass(self.height - others.height, self.weight - others.weight)

    # 说一下自己的参数
    def intro(self):
        print("高为", self.height, " 重为", self.weight)


def main():
    a = MyClass(height=10, weight=5)
    a.intro()

    b = MyClass(height=20, weight=10)
    b.intro()

    c = b - a
    c.intro()

    d = a + b
    d.intro()


if __name__ == '__main__':
    main()

# 高为 10  重为 5
# 高为 20  重为 10
# 高为 10  重为 5
# 高为 30  重为 15
mul(self, other)

定义乘法的行为:*

truediv(self, other)

定义真除法的行为:/

floordiv(self, other)

定义整数除法的行为://

mod(self, other)

定义取模算法的行为:%

divmod(self, other)

定义当被 divmod() 调用时的行为
divmod(a, b)
把除数和余数运算结果结合起来,返回一个包含商和余数的元组(a // b, a % b)。

print(divmod(7, 2))  # (3, 1)
print(divmod(8, 2))  # (4, 0)
pow(self, other[, module])

定义当被 power() 调用或 ** 运算时的行为

lshift(self, other)

定义按位左移位的行为:<<

rshift(self, other)

定义按位右移位的行为:>>

and(self, other)

定义按位与操作的行为:&

xor(self, other)

定义按位异或操作的行为:^

or(self, other)

定义按位或操作的行为:|

反算术运算符

反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。

  • radd(self, other)定义加法的行为:+
  • rsub(self, other)定义减法的行为:-
  • rmul(self, other)定义乘法的行为:*
  • rtruediv(self, other)定义真除法的行为:/
  • rfloordiv(self, other)定义整数除法的行为://
  • rmod(self, other) 定义取模算法的行为:%
  • rdivmod(self, other)定义当被 divmod() 调用时的行为
  • rpow(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
  • rlshift(self, other)定义按位左移位的行为:<<
  • rrshift(self, other)定义按位右移位的行为:>>
  • rand(self, other)定义按位与操作的行为:&
  • rxor(self, other)定义按位异或操作的行为:^
  • ror(self, other)定义按位或操作的行为:|

a+b,这里加数是a,被加数是b,因此是a主动,反运算就是如果a对象的__add__()方法没有实现或者不支持相应的操作,那么 Python 就会调用b的__radd__()方法。

class Nint(int):
    def __radd__(self, other):
        return int.__sub__(other, self) # 注意 self 在后面


a = Nint(5)
b = Nint(3)
print(a + b)  # 8
print(1 + b)  # -2

增量赋值运算符

  • iadd(self, other)定义赋值加法的行为:+=
  • isub(self, other)定义赋值减法的行为:-=
  • imul(self, other)定义赋值乘法的行为:*=
  • itruediv(self, other)定义赋值真除法的行为:/=
  • ifloordiv(self, other)定义赋值整数除法的行为://=
  • imod(self, other)定义赋值取模算法的行为:%=
  • ipow(self, other[, modulo])定义赋值幂运算的行为:**=
  • ilshift(self, other)定义赋值按位左移位的行为:<<=
  • irshift(self, other)定义赋值按位右移位的行为:>>=
  • iand(self, other)定义赋值按位与操作的行为:&=
  • ixor(self, other)定义赋值按位异或操作的行为:^=
  • ior(self, other)定义赋值按位或操作的行为:|=

一元运算符 ???

  • neg(self)定义正号的行为:+x
  • pos(self)定义负号的行为:-x
  • abs(self)定义当被abs()调用时的行为
  • invert(self)定义按位求反的行为:~x

属性访问

  • getattr(self, name): 定义当用户试图获取一个不存在的属性时的行为。
  • getattribute(self, name):定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__)。
  • setattr(self, name, value):定义当一个属性被设置时的行为。
  • delattr(self, name):定义当一个属性被删除时的行为。
class C:
    def __getattribute__(self, item):
        print('__getattribute__')
        return super().__getattribute__(item)

    def __getattr__(self, item):
        print('__getattr__')

    def __setattr__(self, key, value):
        print('__setattr__')
        super().__setattr__(key, value)

    def __delattr__(self, item):
        print('__delattr__')
        super().__delattr__(item)


c = C()
c.x
# __getattribute__
# __getattr__

c.x = 1
# __setattr__

del c.x
# __delattr__

描述符

  • get(self, instance, owner)用于访问属性,它返回属性的值。
  • set(self, instance, value)将在属性分配操作中调用,不返回任何内容。
  • del(self, instance)控制删除操作,不返回任何内容
class MyDecriptor:
    def __get__(self, instance, owner):
        print('__get__', self, instance, owner)

    def __set__(self, instance, value):
        print('__set__', self, instance, value)

    def __delete__(self, instance):
        print('__delete__', self, instance)


class Test:
    x = MyDecriptor()


t = Test()
t.x
# __get__ <__main__.MyDecriptor object at 0x000000CEAAEB6B00> <__main__.Test object at 0x000000CEABDC0898> <class '__main__.Test'>

t.x = 'x-man'
# __set__ <__main__.MyDecriptor object at 0x00000023687C6B00> <__main__.Test object at 0x00000023696B0940> x-man

del t.x
# __delete__ <__main__.MyDecriptor object at 0x000000EC9B160A90> <__main__.Test object at 0x000000EC9B160B38>

定制序列 ???

  • len(self)定义当被len()调用时的行为(返回容器中元素的个数)。
  • getitem(self, key)定义获取容器中元素的行为,相当于self[key]。
  • setitem(self, key, value)定义设置容器中指定元素的行为,相当于self[key] = value。
  • delitem(self, key)定义删除容器中指定元素的行为,相当于del self[key]。

如果希望定制的容器是不可变的话,你只需要定义__len__()和__getitem__()方法。
如果希望定制的容器是可变的话,除了__len__()和__getitem__()方法,你还需要定义__setitem__()和__delitem__()两个方法。

一个不可改变的自定义列表,要求记录列表中每个元素被访问的次数。

class CountList:
    def __init__(self, *args):
        self.values = [x for x in args]
        self.count = {}.fromkeys(range(len(self.values)), 0)

    def __len__(self):
        return len(self.values)

    def __getitem__(self, item):
        self.count[item] += 1
        return self.values[item]


c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
print(c1[1] + c2[1])  # 7

print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}

print(c2.count)
# {0: 0, 1: 1, 2: 1, 3: 0, 4: 0}

一个可改变的自定义列表,要求记录列表中每个元素被访问的次数。

class CountList:
    def __init__(self, *args):
        self.values = [x for x in args]
        self.count = {}.fromkeys(range(len(self.values)), 0)

    def __len__(self):
        return len(self.values)

    def __getitem__(self, item):
        self.count[item] += 1
        return self.values[item]

    def __setitem__(self, key, value):
        self.values[key] = value

    def __delitem__(self, key):
        del self.values[key]
        for i in range(0, len(self.values)):
            if i >= key:
                self.count[i] = self.count[i + 1]
        self.count.pop(len(self.values))


c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
c2[2] = 12
print(c1[1] + c2[2])  # 15
print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}
print(c2.count)
# {0: 0, 1: 0, 2: 2, 3: 0, 4: 0}
del c1[1]
print(c1.count)
# {0: 0, 1: 0, 2: 0, 3: 0}

迭代器

  • 迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。
  • 迭代器是一个可以记住遍历的位置的对象。
  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
  • 迭代器只能往前不会后退。
  • 字符串,列表或元组对象都可用于创建迭代器:
string = 'lsgogroup'
for c in string:
    print(c)

'''
l
s
g
o
g
r
o
u
p
'''

for c in iter(string):
    print(c)
links = {'B': '百度', 'A': '阿里', 'T': '腾讯'}
for each in links:
    print('%s -> %s' % (each, links[each]))
    
'''
B -> 百度
A -> 阿里
T -> 腾讯
'''

for each in iter(links):
    print('%s -> %s' % (each, links[each]))
  • 迭代器有两个基本的方法:iter() 和 next()。
  • iter(object) 函数用来生成迭代器。
  • next(iterator[, default]) 返回迭代器的下一个项目。
  • iterator – 可迭代对象
  • default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。
links = {'B': '百度', 'A': '阿里', 'T': '腾讯'}

it = iter(links)
while True:
    try:
        each = next(it)
    except StopIteration:
        break
    print(each)

# B
# A
# T

it = iter(links)
print(next(it))  # B
print(next(it))  # A
print(next(it))  # T
print(next(it))  # StopIteration

把一个类作为一个迭代器使用需要在类中实现两个魔法方法 iter() 与 next() 。

iter(self)定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 next() 方法并通过 StopIteration 异常标识迭代的完成。
next() 返回下一个迭代器对象。
StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 next() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。


class Fibs:
    def __init__(self, n=10):
        self.a = 0
        self.b = 1
        self.n = n

    def __iter__(self):
        return self

    def __next__(self):
        self.a, self.b = self.b, self.a + self.b
        if self.a > self.n:
            raise StopIteration
        return self.a


fibs = Fibs(100)
for each in fibs:
    print(each, end=' ')

# 1 1 2 3 5 8 13 21 34 55 89

生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象。

def myGen():
    print('生成器执行!')
    yield 1
    yield 2
    
myG = myGen()
for each in myG:
    print(each)

'''
生成器执行!
1
2
'''

myG = myGen()
print(next(myG))  
# 生成器执行!
# 1

print(next(myG))  # 2
print(next(myG))  # StopIteration
def libs(n):
    a = 0
    b = 1
    while True:
        a, b = b, a + b
        if a > n:
            return
        yield a


for each in libs(100):
    print(each, end=' ')

# 1 1 2 3 5 8 13 21 34 55 89
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值