数列
例62: 已知数列 a n {a_n} an的前 n n n项和为 S n , a 1 = 1 , S n = 2 a n + 1 ,则 S n = ( ) S_n,a_1=1,S_n=2 a_{n+1} ,则S_n = ( ) Sn,a1=1,Sn=2an+1,则Sn=()
(A) 2 n − 1 2^{n-1} 2n−1 (B) ( 3 2 ) n − 1 (\frac 3 2)^{n-1} (23)n−1 (C) ( 2 3 ) n − 1 (\frac 2 3)^{n-1} (32)n−1 (D) 1 2 n − 1 \frac 1 {2^{n-1}} 2n−11
解法一:书上的解法,由 a n + 1 = S n + 1 − S n a_{n+1}=S_{n+1}-S_n an+1=Sn+1−Sn,故 S n = 2 a n + 1 = 2 ( S n + 1 − S n ) S_n=2a_{n+1}=2(S_{n+1}-S_n) Sn=2an+1=2(Sn+1−Sn),即 3 S n = 2 S n + 1 , S n + 1 S n = 3 2 3S_n=2S_{n+1},\frac {S_{n+1}} {S_n}=\frac 3 2 3Sn=2Sn+1,SnSn+1=23,所以 { S n } \{S_n\} {Sn}是以 S 1 = a 1 = 1 S_1=a_1=1 S1=a1=1为首项, q = 3 2 q=\frac 3 2 q=23为公比的等比数列,即 S n = ( 3 2 ) n − 1 S_n=(\frac 3 2)^{n-1} Sn=(23)n−1,选(B).
解法二:高中时的解法,首先判断 a n a_n an是否为等比数列,由定义法来证明
当 n = 1 n = 1 n=1时,由 S n = 2 a n + 1 S_n=2a_{n+1} Sn=2an+1得 S 1 = a 1 = 2 a 2 S_1=a_1=2a_2 S1=a1=2a2,故 a 2 a 1 = 1 2 \frac {a_2} {a_1} = \frac 1 2 a1a2=21,又 a 1 = 1 a_1=1 a1=1,所以 a 2 = 1 2 a_2=\frac 1 2 a2=21.
当 n ≥ 2 n\geq 2 n≥2时,由 S n = 2 a n + 1 S_n=2a_{n+1} Sn=2an+1得 S n − 1 = 2 a n S_{n-1}= 2a_n Sn−1=2an,两式相减得 a n = 2 a n + 1 − 2 a n a_n=2a_{n+1}-2a_n an=2an+1−2an,得 a n + 1 a n = 3 2 \frac {a_{n+1}} {a_n} = \frac 3 2 anan+1=23,与上文矛盾,故 { a n } \{a_n\} {an}非等比数列,但当 n ≥ 2 n \geq 2 n≥2时,是一个首项为 1 2 \frac 1 2 21,公比为 3 2 \frac 3 2 23的数列,将之命名为数列 { b n } \{b_n\} {bn}, b n = 1 2 ( 3 2 ) n − 1 b_n=\frac 1 2(\frac 3 2)^{n-1} bn=21(23)n−1,数列 { a n } \{a_n \} {an}的第二项即 { b n } \{b_n \} {bn}的第一项,故 a n = { 1 n = 1 b n − 1 n ≥ 2 a_n=\begin{cases}1 & n=1 \\ b_{n-1} & n \geq2 \end{cases} an={1bn−1n=1n≥2 ,
设数列
{
b
n
}
\{b_n \}
{bn}的前
n
n
n项和为
T
n
T_n
Tn,
所以
S
n
=
{
1
n
=
1
S
1
+
T
n
−
1
n
≥
2
=
{
1
n
=
1
S
1
+
b
1
(
1
−
q
n
−
1
)
1
−
q
n
≥
2
S_n=\begin{cases}1 & n=1 \\ S_1+T_{n-1} & n \geq2 \end{cases} = \begin{cases}1 & n=1 \\ S_1+\frac {b_1(1-q^{n-1})} {1 - q} & n \geq2 \end{cases}
Sn={1S1+Tn−1n=1n≥2={1S1+1−qb1(1−qn−1)n=1n≥2 ,
算得 S n = ( 3 2 ) n − 1 S_n=(\frac 3 2)^{n-1} Sn=(23)n−1,选(B).