线性代数(2)—— 矩阵定义及基本运算

  • 参考:张宇高等数学基础30讲

1. 矩阵的本质

1.1 矩阵是系统信息的表示方式

  • 我们可以把矩阵看作信息的一种表示方式。比如英语系有98个女生,2个男生;机械系有95个男生,5个女生,这个系统可以用矩阵表示如下
    在这里插入图片描述
    矩阵忽略数据的现实含义,矩阵就是一组排列好的数,只要抽象地认为矩阵是一个系统信息的表达即可

1.2 两个重要观点

  • 这里从向量组和线性方程组的角度补充两个认识矩阵的观点,以后再详细说明。以以下矩阵为例
    A = [ 1 2 3 6 7 9 2 4 6 ] A = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 7 & 9 \\ 2 & 4 & 6 \end{bmatrix} A= 162274396
  1. 重要观点1:矩阵是由若干行(列)向量拼成的: 上面的矩阵可以看成由三个行向量 [1,2,3],[6,7,9],[2,4,6] 组成,也可看成由三个列向量组成。
  2. 重要观点2:矩阵不能运算,但是其若干行(列)向量之间存在着某种联系:注意 [1,2,3] 与 [2,4,6] 这两个向量是平行的(存在线性关系),而 [1,2,3] 与 [6,7,9] , [2,4,6] 与 [6,7,9] 却不存在这种线性关系。这种关系反映了矩阵的本质 —— 矩阵的秩(示例矩阵的秩是2)

2. 矩阵的定义及基本运算

2.1 矩阵的定义

  • m × n m \times n m×n 个数 a i j ( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n ) a_{ij}(i=1,2,...,m;j=1,2,...,n) aij(i=1,2,...,m;j=1,2,...,n) 排成的m行n列的矩形表格
    A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 … a m n ] A = \begin{bmatrix} a_{11} & a_{12} &\dots & a_{1n} \\ a_{21} & a_{22} &\dots & a_{2n} \\ \vdots & \vdots & &\vdots \\ a_{m1} &a_{m2} &\dots & a_{mn} \end{bmatrix} A= a11a21am1a12a22am2a1na2namn
    称为一个 m x n矩阵,简记为 A \pmb{A} A ( a i j ) m × n (a_{ij})_{m \times n} (aij)m×n;当 m = n m=n m=n 时,称 A \pmb{A} An阶方阵
  • 两个矩阵 A = ( a i j ) m × n \pmb{A} = (a_{ij})_{m \times n} A=(aij)m×n B = ( a i j ) s × k \pmb{B} = (a_{ij})_{s \times k} B=(aij)s×k,若 m=s,n=k,则称 A , B \pmb{A},\pmb{B} A,B同型矩阵

2.2 矩阵的基本运算

2.2.1 相等

  • 矩阵 A , B \pmb{A},\pmb{B} A,B 为同型矩阵且每个元素相等,则矩阵 A , B \pmb{A},\pmb{B} A,B 相等
    A = ( a i j ) m × n = B = ( a i j ) s × k ⇔ { m = s n = k a i j = b i j ( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n ) \pmb{A} = (a_{ij})_{m \times n} = \pmb{B} = (a_{ij})_{s \times k} \Leftrightarrow \left\{ \begin{aligned} &m &= & s \\ &n &= & k \\ &a_{ij} &= &b_{ij}(i=1,2,...,m;j=1,2,...,n) \end{aligned} \right. A=(aij)m×n=B=(aij)s×k mnaij===skbij(i=1,2,...,m;j=1,2,...,n)

2.2.2 加法

  • 同型矩阵可以相加,做加法时对应元素相加
    A + B = ( a i j ) m × n + ( b i j ) m × n = ( c i j ) m × n = C \pmb{A} + \pmb{B} = (a_{ij})_{m\times n} + (b_{ij})_{m\times n} = (c_{ij})_{m\times n} = \pmb{C} A+B=(aij)m×n+(bij)m×n=(cij)m×n=C
    其中 c i j = a i j + b i j ( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n ) c_{ij} = a_{ij}+b_{ij}(i=1,2,...,m;j=1,2,...,n) cij=aij+bij(i=1,2,...,m;j=1,2,...,n)

2.2.3 数乘矩阵

  • 设k是一个数, A \pmb{A} A是一个 m × n m \times n m×n 矩阵,数k和 A \pmb{A} A 的乘积为数乘矩阵,即
    k A = A k = k [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 … a m n ] = [ k a 11 k a 12 … k a 1 n k a 21 k a 22 … k a 2 n ⋮ ⋮ ⋮ k a m 1 k a m 2 … k a m n ] = ( k a i j ) m × n k\pmb{A} = \pmb{A}k = k \begin{bmatrix} a_{11} & a_{12} &\dots & a_{1n} \\ a_{21} & a_{22} &\dots & a_{2n} \\ \vdots & \vdots & &\vdots \\ a_{m1} &a_{m2} &\dots & a_{mn} \end{bmatrix} = \begin{bmatrix} ka_{11} & ka_{12} &\dots & ka_{1n} \\ ka_{21} & ka_{22} &\dots & ka_{2n} \\ \vdots & \vdots & &\vdots \\ ka_{m1} &ka_{m2} &\dots & ka_{mn} \end{bmatrix} = (ka_{ij})_{m\times n} kA=Ak=k a11a21am1a12a22am2a1na2namn = ka11ka21kam1ka12ka22kam2ka1nka2nkamn =(kaij)m×n
    A \pmb{A} A每个元素都乘以 k

2.2.4 矩阵乘法

  • A \pmb{A} A m × s m\times s m×s 矩阵, B \pmb{B} B s × n s\times n s×n 矩阵,则 A , B \pmb{A},\pmb{B} A,B 可乘( A \pmb{A} A 的列数必须与 B \pmb{B} B 的行数相等),乘积 A B \pmb{A}\pmb{B} AB m × n m\times n m×n 矩阵,记 C = A B = ( c i j ) m × n \pmb{C} = \pmb{A}\pmb{B} = (c_{ij})_{m\times n} C=AB=(cij)m×n,其中
    c i j = ∑ k = 1 s a i k b k j = a i 1 b 1 j + a i 2 b 2 j + . . . + a i s b s j , ( i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n ) c_{ij} = \sum^s_{k=1}a_{ik}b_{kj} = a_{i1}b_{1j} + a_{i2}b_{2j} +...+ a_{is}b_{sj}, (i=1,2,...,m;j=1,2,...,n) cij=k=1saikbkj=ai1b1j+ai2b2j+...+aisbsj,(i=1,2,...,m;j=1,2,...,n)

2.2.5 转置矩阵

  • m × n m\times n m×n 矩阵 A = ( a i j ) m × n \pmb{A} = (a_{ij})_{m\times n} A=(aij)m×n行与列互换得到的 n × m n\times m n×m 矩阵,称为 A \pmb{A} A 的转置矩阵,记为 A T A^T AT,即
    A T = [ a 11 a 21 … a m 1 a 12 a 22 … a m 2 ⋮ ⋮ ⋮ a 1 n a 2 n … a m n ] A^T = \begin{bmatrix} a_{11} & a_{21} &\dots & a_{m1} \\ a_{12} & a_{22} &\dots & a_{m2} \\ \vdots & \vdots & &\vdots \\ a_{1n} &a_{2n} &\dots & a_{mn} \end{bmatrix} AT= a11a12a1na21a22a2nam1am2amn

2.2.6 向量的內积与正交

  • α = [ a 1 , a 2 , . . . , a n ] T , β = [ b 1 , b 2 , . . . , b n ] T \pmb{\alpha} = [a_1,a_2,...,a_n]^T,\pmb{\beta} = [b_1,b_2,...,b_n]^T α=[a1,a2,...,an]T,β=[b1,b2,...,bn]T,则
    1. 內积:向量 α , β \pmb{\alpha},\pmb{\beta} α,β 的內积为
      α T β = ∑ i = 1 n a i b i = a 1 b 1 + a 2 b 2 + . . . + a n b n \pmb{\alpha}^T\pmb{\beta} = \sum_{i=1}^na_ib_i = a_1b_1+a_2b_2+...+a_nb_n αTβ=i=1naibi=a1b1+a2b2+...+anbn
      记为 ( α , β ) (\pmb{\alpha},\pmb{\beta}) (α,β),即 ( α , β ) = α T β (\pmb{\alpha},\pmb{\beta}) = \pmb{\alpha}^T\pmb{\beta} (α,β)=αTβ,内积计算的实际是向量 β \pmb{\beta} β 在向量 α \pmb{\alpha} α 方向上投影的长度值放大 ∣ ∣ α ∣ ∣ ||\alpha|| ∣∣α∣∣倍,是一个数 ,设向量 α , β \pmb{\alpha},\pmb{\beta} α,β 夹角为 θ \theta θ,有
      ( α , β ) = ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ ⋅ c o s θ (\pmb{\alpha},\pmb{\beta}) = ||\pmb{\alpha}|| · ||\pmb{\beta}||·cos\theta (α,β)=∣∣α∣∣∣∣β∣∣cosθ
    2. 正交:当 α T β = 0 \pmb{\alpha}^T\pmb{\beta} = 0 αTβ=0 时,称向量 ( α , β ) (\pmb{\alpha},\pmb{\beta}) (α,β) 是正交向量。所谓正交,在几何意义上就是两向量相互垂直
    3. :模即为向量的长度,向量 α \pmb{\alpha} α 的模为
      ∣ ∣ α ∣ ∣ = ∑ i = 1 n a i 2 ||\pmb{\alpha}|| = \sqrt{\sum_{i=1}^na_i^2} ∣∣α∣∣=i=1nai2
      ∣ ∣ α ∣ ∣ = 1 ||\pmb{\alpha}|| = 1 ∣∣α∣∣=1 时,称 α \pmb{\alpha} α单位向量
    4. 标准正交向量组:若向量组 α 1 , α 2 , . . . , α s \pmb{\alpha}_1,\pmb{\alpha}_2,...,\pmb{\alpha}_s α1,α2,...,αs 满足
      α i T α j = { 0 , i ≠ j ⇒ α i ⊥ α j 1 , i = j ⇒ ∣ ∣ α i ∣ ∣ = 1 \pmb{\alpha}_i^T\pmb{\alpha}_j = \left\{ \begin{aligned} &0&,i\neq j &\Rightarrow \pmb{\alpha}_i \perp \pmb{\alpha}_j \\ &1&,i=j &\Rightarrow ||\pmb{\alpha}_i|| = 1 \end{aligned} \right. αiTαj={01,i=j,i=jαiαj∣∣αi∣∣=1
      则称向量组 α 1 , α 2 , . . . , α s \pmb{\alpha}_1,\pmb{\alpha}_2,...,\pmb{\alpha}_s α1,α2,...,αs 为标准正交向量组(单位正交向量组),笛卡尔坐标的三个方向向量就是一组标准正交向量组。关键:每个向量都是单位向量,且两两正交

2.2.7 施密特标准正交化

  • 施密特标准正交化可以将任意线性无关向量组 α 1 , α 2 \pmb{\alpha}_1,\pmb{\alpha}_2 α1,α2 转换为标准正交向量组 η 1 , η 2 \pmb{\eta}_1,\pmb{\eta}_2 η1,η2,其分为两步进行

    1. 正交化:将任意线性无关向量组 α 1 , α 2 \pmb{\alpha}_1,\pmb{\alpha}_2 α1,α2 转换为正交向量组 β 1 , β 2 \pmb{\beta}_1,\pmb{\beta}_2 β1,β2
      { β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \left\{ \begin{aligned} &\pmb{\beta}_1 = \pmb{\alpha}_1, \\ &\pmb{\beta}_2 = \pmb{\alpha}_2 - \frac{(\pmb{\alpha}_2,\pmb{\beta}_1)}{(\pmb{\beta}_1,\pmb{\beta}_1)} \pmb{\beta}_1 \end{aligned} \right. β1=α1,β2=α2(β1,β1)(α2,β1)β1
      从几何角度理解一下,是这样的
      在这里插入图片描述

    t = ∣ ∣ α 2 ∣ ∣ ⋅ c o s θ ⋅ α 1 ∣ ∣ α 1 ∣ ∣ = ∣ ∣ α 2 ∣ ∣ ⋅ ∣ ∣ β 1 ∣ ∣ ⋅ c o s θ ∣ ∣ β 1 ∣ ∣ 2 ⋅ β 1 = ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \begin{aligned} \pmb{t} &= ||\pmb{\alpha}_2||·cos\theta·\frac{\pmb{\alpha}_1}{||\pmb{\alpha}_1||} \\ &=\frac{||\pmb{\alpha}_2||·||\pmb{\beta}_1||·cos\theta}{||\pmb{\beta}_1||^2}·\pmb{\beta}_1 \\ &=\frac{(\pmb{\alpha}_2,\pmb{\beta}_1)}{(\pmb{\beta}_1,\pmb{\beta}_1)} \pmb{\beta}_1 \end{aligned} t=∣∣α2∣∣cosθ∣∣α1∣∣α1=∣∣β12∣∣α2∣∣∣∣β1∣∣cosθβ1=(β1,β1)(α2,β1)β1
    2. 单位化:将正交向量组 β 1 , β 2 \pmb{\beta}_1,\pmb{\beta}_2 β1,β2 单位化,即得标准正交向量组 η 1 , η 2 \pmb{\eta}_1,\pmb{\eta}_2 η1,η2
    { η 1 = β 1 ∣ ∣ β 1 ∣ ∣ , η 2 = β 2 ∣ ∣ β 2 ∣ ∣ \left\{ \begin{aligned} &\pmb{\eta}_1 = \frac{\pmb{\beta}_1}{||\pmb{\beta}_1||}, \\ &\pmb{\eta}_2 = \frac{\pmb{\beta}_2}{||\pmb{\beta}_2||} \end{aligned} \right. η1=∣∣β1∣∣β1,η2=∣∣β2∣∣β2

2.2.8 方阵的幂

  • A \pmb{A} A 是一个n阶方阵,则 A m = A A . . . A ⏞ m个 \pmb{A}^m = \overbrace{\pmb{A}\pmb{A}...\pmb{A}}^{\text{m个}} Am=AA...A m 称为 A \pmb{A} A 的m次幂

2.3 运算律

2.3.1 线性运算

  • A , B , C \pmb{A},\pmb{B},\pmb{C} A,B,C 是同型矩阵, k , l k,l k,l 是任意常数
    1. 交换律: A + B = B + A \pmb{A} + \pmb{B} = \pmb{B} + \pmb{A} A+B=B+A
    2. 结合律: ( A + B ) + C = A + ( B + C ) (\pmb{A}+\pmb{B})+\pmb{C} = \pmb{A}+(\pmb{B}+\pmb{C}) (A+B)+C=A+(B+C)
    3. 分配率: k ( A + B ) = k A + k B , ( k + l ) A = k A + l A k(\pmb{A}+\pmb{B})=k\pmb{A}+k\pmb{B},(k+l)\pmb{A} = k\pmb{A} + l\pmb{A} k(A+B)=kA+kB,(k+l)A=kA+lA
    4. 数乘结合律: k ( l A ) = ( k l ) A = l ( k A ) k(l\pmb{A}) = (kl)\pmb{A} = l(k\pmb{A}) k(lA)=(kl)A=l(kA)

2.3.2 方阵的行列式

  • 当n阶方阵 A \pmb{A} A 计算行列式时,记作 ∣ A ∣ |\pmb{A}| A,设 A , B \pmb{A},\pmb{B} A,B同阶方阵,则
    1. ∣ k A ∣ = k n ∣ A ∣ ≠ k ∣ A ∣ ( n ≥ 2 , k ≠ 0 , 1 ) |k\pmb{A}| = k^n|\pmb{A}| \neq k|\pmb{A}|(n\geq2,k\neq0,1) kA=knA=kA(n2,k=0,1)
    2. 一般, ∣ A + B ∣ ≠ ∣ A ∣ + ∣ B ∣ |\pmb{A}+\pmb{B}| \neq |\pmb{A}|+|\pmb{B}| A+B=A+B
      • 比如 A = [ 1 0 0 1 ] , B = [ − 1 0 0 − 1 ] \pmb{A}=\begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix},\pmb{B} = \begin{bmatrix} -1 & 0 \\ 0 & -1\end{bmatrix} A=[1001],B=[1001],此时 ∣ A + B ∣ = 0 , ∣ A ∣ + ∣ B ∣ = 2 |\pmb{A}+\pmb{B}| = 0,|\pmb{A}|+|\pmb{B}|=2 A+B=0,A+B=2
    3. ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |\pmb{A}\pmb{B}|=|\pmb{A}||\pmb{B}| AB=A∣∣B
    4. A ≠ 0 ⇏ ∣ A ∣ ≠ 0 \pmb{A}\neq \pmb{0} \nRightarrow |\pmb{A}|\neq 0 A=0A=0
      • 比如 A = [ 1 1 1 1 ] \pmb{A}=\begin{bmatrix} 1 & 1 \\ 1 & 1\end{bmatrix} A=[1111]
    5. A ≠ B ⇏ ∣ A ∣ ≠ ∣ B ∣ \pmb{A}\neq \pmb{B} \nRightarrow |\pmb{A}|\neq |\pmb{B}| A=BA=B
      • 比如 A = [ 1 0 0 1 ] , B = [ − 1 0 0 − 1 ] \pmb{A}=\begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix},\pmb{B} = \begin{bmatrix} -1 & 0 \\ 0 & -1\end{bmatrix} A=[1001],B=[1001]

2.3.3 矩阵乘法

  • A , B , C \pmb{A},\pmb{B},\pmb{C} A,B,C 是矩阵, k k k 是任意常数

    1. 结合律: ( A m × s B s × r ) C r × n = A m × s ( B s × r C r × n ) (\pmb{A}_{m\times s}\pmb{B}_{s\times r})\pmb{C}_{r\times n} = \pmb{A}_{m\times s}(\pmb{B}_{s\times r}\pmb{C}_{r\times n}) (Am×sBs×r)Cr×n=Am×s(Bs×rCr×n)
    2. 分配率: A m × s ( B s × n + C s × n ) = A m × s B s × n + A m × s C s × n \pmb{A}_{m\times s}(\pmb{B}_{s\times n}+\pmb{C}_{s\times n}) = \pmb{A}_{m\times s}\pmb{B}_{s\times n}+\pmb{A}_{m\times s}\pmb{C}_{s\times n} Am×s(Bs×n+Cs×n)=Am×sBs×n+Am×sCs×n
    3. 数乘与矩阵乘积的结合律: ( k A m × s ) B s × n = A m × s ( k B s × n ) = k ( A m × s B s × n ) (k\pmb{A}_{m\times s})\pmb{B}_{s\times n} = \pmb{A}_{m\times s}(k\pmb{B}_{s\times n})=k(\pmb{A}_{m\times s}\pmb{B}_{s\times n}) (kAm×s)Bs×n=Am×s(kBs×n)=k(Am×sBs×n)
  • 矩阵乘法通常不满足交换律
    在这里插入图片描述

    • 给上面(3)举个例子,比如 A = [ 1 0 0 1 ] , B = [ − 1 0 0 − 1 ] , C = [ 0 0 0 0 ] \pmb{A}=\begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix},\pmb{B} = \begin{bmatrix} -1 & 0 \\ 0 & -1\end{bmatrix},\pmb{C} = \begin{bmatrix} 0 & 0 \\ 0 & 0\end{bmatrix} A=[1001],B=[1001],C=[0000],此时 A B = A C = [ 0 0 0 0 ] \pmb{A}\pmb{B}=\pmb{A}\pmb{C} = \begin{bmatrix} 0 & 0 \\ 0 & 0\end{bmatrix} AB=AC=[0000]

    在这里插入图片描述

2.3.4 矩阵转置

  • A \pmb{A} A m × n m\times n m×n 矩阵
    1. ( A T ) T = A (\pmb{A}^T)^T = \pmb{A} (AT)T=A
    2. ( k A ) T = k A T (k\pmb{A})^T = k\pmb{A}^T (kA)T=kAT
    3. ( A + B ) T = A T + B T (\pmb{A}+\pmb{B})^T = \pmb{A}^T+\pmb{B}^T (A+B)T=AT+BT
    4. ( A B ) T = B T A T (\pmb{A}\pmb{B})^T = \pmb{B}^T\pmb{A}^T (AB)T=BTAT
    5. m=n时, A \pmb{A} A是方阵,此时根据行列式性质,有 ∣ A T ∣ = ∣ A ∣ |\pmb{A}^T|=|\pmb{A}| AT=A

3. 几种重要矩阵

  1. 零矩阵 0 \pmb{0} 0):每个元素均为0的矩阵
  2. 单位矩阵 E \pmb{E} E I \pmb{I} I):主对角线全为1,其余元素全为0的n阶方阵
  3. 数量矩阵:数 k k k 和单位矩阵的乘积称为数量矩阵,主对角线全为 k k k,其余元素全为 0 的n阶方阵
  4. 对角矩阵:非主对角线元素均为 0 的矩阵
  5. 上(下)三角矩阵:当 i > ( < ) j i>(<)j i>(<)j 时, a i j = 0 a_{ij}=0 aij=0 的矩阵称为上(下)三角矩阵
  6. 对称矩阵:满足条件 A T = A \pmb{A}^T = \pmb{A} AT=A 的矩阵 A \pmb{A} A 称为对称矩阵,
    A T = A ⇔ a i j = a j i   例如 A = [ 1 2 3 2 7 9 3 9 6 ] \pmb{A}^T = \pmb{A} \Leftrightarrow a_{ij}=a_{ji}\\ \\\space\\ 例如A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 7 & 9 \\ 3 & 9 & 6 \end{bmatrix} AT=Aaij=aji 例如A= 123279396
  7. 反对称矩阵:满足条件 A T = − A \pmb{A}^T = -\pmb{A} AT=A 的矩阵 A \pmb{A} A 称为反对称矩阵
    A T = − A ⇔ { a i j = − a j i , i ≠ j a i i = 0   例如 A = [ 0 2 3 − 2 0 9 − 3 − 9 0 ] \pmb{A}^T = -\pmb{A} \Leftrightarrow \left\{ \begin{aligned} &a_{ij} = -a_{ji}&,i\neq j \\ &a_{ii} = 0 \end{aligned} \right. \\\space\\ 例如A = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0& 9 \\ -3 & -9 & 0 \end{bmatrix} AT=A{aij=ajiaii=0,i=j 例如A= 023209390
  8. 正交矩阵:设 A \pmb{A} A 是n阶方阵,满足 A T A = E \pmb{A}^T\pmb{A} = \pmb{E} ATA=E,则称 A \pmb{A} A 是正交矩阵。
    A 是正交矩阵 ⇔ A T A = E ⇔ A 的行(列)向量是标准正交向量组 \pmb{A}是正交矩阵 \Leftrightarrow \pmb{A}^T\pmb{A} = \pmb{E} \Leftrightarrow \pmb{A}的行(列)向量是标准正交向量组 A是正交矩阵ATA=EA的行(列)向量是标准正交向量组
    分析:设 A = [ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ] \pmb{A} = \begin{bmatrix}a_1 & a_2 & a_3 \\b_1 & b_2 & b_3 \\c_1 & c_2 & c_3\end{bmatrix} A= a1b1c1a2b2c2a3b3c3 ,且记
    α = [ a 1 , a 2 , a 3 ] T , β = [ b 1 , b 2 , b 3 ] T , γ = [ c 1 , c 2 , c 3 ] T   ∴ A T A = [ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ] [ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ] = E = [ 1 0 0 0 1 0 0 0 1 ]   ∴ { α T α = 1 ⇒ ∣ ∣ α ∣ ∣ = 1 β T β = 1 ⇒ ∣ ∣ β ∣ ∣ = 1 γ T γ = 1 ⇒ ∣ ∣ γ ∣ ∣ = 1 α T β = 0 ⇒ ( α , β ) = 0 , 即 α , β 正交 α T γ = 0 ⇒ ( α , γ ) = 0 , 即 α , γ 正交 β T γ = 0 ⇒ ( β , γ ) = 0 , 即 β , γ 正交 \pmb{\alpha} = [a_1,a_2,a_3]^T,\pmb{\beta} = [b_1,b_2,b_3]^T,\pmb{\gamma} = [c_1,c_2,c_3]^T \\ \\\space \\ \therefore \pmb{A}^T\pmb{A} = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = \pmb{E} = \begin{bmatrix} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \\\space \\ \therefore \left\{ \begin{aligned} & \pmb{\alpha}^T\pmb{\alpha} = 1 \Rightarrow ||\pmb{\alpha}|| = 1 \\ & \pmb{\beta}^T\pmb{\beta} = 1 \Rightarrow ||\pmb{\beta}|| = 1 \\ & \pmb{\gamma}^T\pmb{\gamma} = 1 \Rightarrow ||\pmb{\gamma}|| = 1 \\ & \pmb{\alpha}^T\pmb{\beta} = 0 \Rightarrow (\pmb{\alpha},\pmb{\beta}) = 0,即\pmb{\alpha},\pmb{\beta}正交\\ & \pmb{\alpha}^T\pmb{\gamma} = 0 \Rightarrow (\pmb{\alpha},\pmb{\gamma}) = 0,即\pmb{\alpha},\pmb{\gamma}正交\\ & \pmb{\beta}^T\pmb{\gamma} = 0 \Rightarrow (\pmb{\beta},\pmb{\gamma}) = 0,即\pmb{\beta},\pmb{\gamma}正交 \end{aligned} \right. α=[a1,a2,a3]Tβ=[b1,b2,b3]Tγ=[c1,c2,c3]T ATA= a1b1c1a2b2c2a3b3c3 a1a2a3b1b2b3c1c2c3 =E= 100010001   αTα=1∣∣α∣∣=1βTβ=1∣∣β∣∣=1γTγ=1∣∣γ∣∣=1αTβ=0(α,β)=0,α,β正交αTγ=0(α,γ)=0,α,γ正交βTγ=0(β,γ)=0,β,γ正交
    A \pmb{A} A 是由两两正交的单位向量组(称为规范正交基)组成
  9. 分块矩阵
    1. 矩阵的分块
      在这里插入图片描述
    2. 分块矩阵的基本运算(以 2 × 2 2\times 2 2×2型分块矩阵为例)
      在这里插入图片描述
  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 15
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值