微分方程
微分方程就是含有未知数导数(微分)的方程
微分方程的解是函数,就是y=f(x)的函数,其实进一步思考可以求x=f(y),总之就是一个x和y的隐函数。
1.一阶微分方程
一阶微分方程,就是指微分方程中,最高次项是一阶导数的,我们要把他整理积分求出y。
1.1 可分离变量型微分方程
d y d x = f ( x ) g ( y ) ⇒ 移项整理 ∫ d y g ( y ) = ∫ f ( x ) d x \frac{dy}{dx} = f(x)g(y) \overset{\text{移项整理}}{\Rightarrow} \int \frac{dy}{g(y)} = \int f(x) \, dx dxdy=f(x)g(y)⇒移项整理∫g(y)dy=∫f(x)dx
可变分离变量型微分方程,有的是直接就可变分离变量,有的是先换元,再分离变量。
1.2 一阶齐次微分方程
如何判断齐次?
我们把y’看成0次,x,y分别看成1次,xy看成(1+1)=2次,y/x看成(1-1=0)次。x+y,x-y,都是1次。
一般的情况是,形如y/x的形式,也就是都是0次,当然了,一阶方程也只能是形如y/x的形式。
d
y
d
x
=
φ
{
y
x
}
\frac{dy}{dx} = \varphi \left\{\frac{y}{x}\right\}\:
dxdy=φ{xy}
解法就是:把y/x换元=u,变成可分离变量的那种形式再回带。
1.3 一阶线性微分方程
如何判断线性?
谨记判断y是否线性和x无关,只看y,如果y与y之间不是独立存在的,即有yy′,或者y′✖️y",或者yy这种情况的,他是非线性的。
如果有y的复合函数(siny,cosy,ey这种)出现的,他是非线性的。
如果以上情况都没出现,那么他是线性的。
同理判断x是否线性和y无关,只看x
y ′ + p ( x ) y = q ( x ) y' + p\left(x\right)y = q\left(x\right)\: y′+p(x)y=q(x)
解法很简单,直接套公式
y = e ∫ − p ( x ) d x [ ∫ e ∫ p ( x ) d x q ( x ) d x + C ] y = e^{\int \limits_{}^{} - p\left(x\right)dx}\left[\int _{}^{}e^{\int \limits_{}^{}p\left(x\right)dx}q\left(x\right)dx + C\right]\:\: y=e∫−p(x)dx[∫e∫p(x)dxq(x)dx+C]
公式使用要注意:
1.p(x)不用+c,实际这里指的是某一个原函数,这里只是约定俗称的写法。
2.有些题目中,y不是线性的,但是x是线性的,我们可以把公式中y全部替换为x,x替换为y,求x=什么,最后答案也是该微分方程的解
3.注意,∫-p(x)和∫p(x)不是不定积分,不定积分是全体原函数,而它是一个原函数,所以他其实是一个变上限积分,所以,有的时候可以把它的上限写成x,下限写成0,有些题就可以求导了。
2. 高阶微分方程
2.1 可降阶的高阶微分方程求解(以二阶为例)
关键字:可降阶(降阶法)
在求解之前的讨论:
二阶微分方程的一般形式:y"=f(x,y,y′),这种形式降阶法是无法求解的,所以降阶法只适用于部分情况。
- y"=f(x) 【这种形式没什么好说的,两次积分】
- y"=f(x,y) 【和最一般的形式一样,降阶法没法计算,通过求解方法,就能理解,为什么降阶法没法计算这种形式】
- y"=f(y) 【没法用降阶法】
- y"=f(y′) 【降阶法】
- y"=f(y,y′) 【降阶法】
- y"=f(x,y′) 【降阶法】
总结:
什么情况下可以使用降阶法?
缺y型和缺x型
降阶法的使用,本质就是设一阶导为p,二阶导就变成了dp/dx,然后我们通过一些代换,只留下两种未知数(如p和y或者p和x),然后可分离变量求积分。
-
1️⃣y"=f(y′)
- 很明显y‘变成p,也就是直接设一阶导为p,二阶导为dp/dx即可,整个方程只有p和x。
-
2️⃣y"=f(y,y′)
- 设完y’,但是多了y,我们考虑让消除掉x,让方程只剩p和y
p = d y d x p ′ ′ = d p d x = d p d y × d y d x 因为 d y d x = p ,代换成 p ,此时方程中就只有 y 和 p 了 p = \frac{dy}{dx}\\\:p'' = \frac{dp}{dx} = \frac{dp}{dy} \times \frac{dy}{dx}因为\frac{dy}{dx} = p,代换成p,此时方程中就只有y和p了\:\: p=dxdyp′′=dxdp=dydp×dxdy因为dxdy=p,代换成p,此时方程中就只有y和p了
-
3️⃣y"=f(x,y′)
- 同第一种情况
2.2 二阶常系数线性微分方程
引子:二阶常系数线性微分方程我们是可以求解的,如果不是常系数,我们只停留在理论上可以求解。
齐次方程
y
″
+
p
(
x
)
y
′
+
q
(
x
)
y
=
0
齐次方程y^{″} + p\left(x\right)y^{′} + q\left(x\right)y = 0\:\:\:\:
齐次方程y″+p(x)y′+q(x)y=0
非齐次方程
y
″
+
p
(
x
)
y
′
+
q
(
x
)
y
=
f
(
x
)
非齐次方程y^{″} + p\left(x\right)y^{′} + q\left(x\right)y = f\left(x\right)
非齐次方程y″+p(x)y′+q(x)y=f(x)
解的结构:
1️⃣齐次方程的通解的结构是,两个线性无关的特解之和。
2️⃣非齐次方程的通解的结构是,它所对应的齐次方程的通解+非齐次方程的一个特解
3️⃣两个非齐次方程的特解之差,是对应的齐次方程的一个特解.
简单推导,f(x)-f(x)=0,形式是不变的.
非齐次-非齐次=齐次
还可以推出 非齐次-齐次=非齐次 齐次+非齐次=非齐次(用于在题目中的化简计算
4️⃣两个对应齐次方程相同的非齐次方程具有累加性,
y
″
+
p
(
x
)
y
′
+
q
(
x
)
y
=
f
1
(
x
)
特解是
y
1
y
″
+
p
(
x
)
y
′
+
q
(
x
)
y
=
f
2
(
x
)
特解是
y
2
y
″
+
p
(
x
)
y
′
+
q
(
x
)
y
=
f
1
(
x
)
+
f
2
(
x
)
特解是
y
1
+
y
2
y^{″} + p\left(x\right)y^{′} + q\left(x\right)y =f_{1}\left(x\right)特解是y1\\\:y^{″} + p\left(x\right)y^{′} + q\left(x\right)y = f_{2}\left(x\right)特解是y2\\\:y^{″} + p\left(x\right)y^{′} + q\left(x\right)y = f_{1}\left(x\right) + f_{2}\left(x\right)特解是y1 + y2\:
y″+p(x)y′+q(x)y=f1(x)特解是y1y″+p(x)y′+q(x)y=f2(x)特解是y2y″+p(x)y′+q(x)y=f1(x)+f2(x)特解是y1+y2
2.2.1 二阶常系数齐次微分方程
如果是常系数的齐次微分方程,解的结构就可以确定
⭐️求解过程:2阶导就是r2,1阶导是r1,3阶导是r3
确定特征方程 r2+pr+q=0
求通解(重点):
1️⃣p2-4q>0,r1,r2是两个不等实根,y=C1er1x+C2er2x
2️⃣p2-4q=0,r1=r2,即两个相等的实根(二重根), y=(C1+C2x)ex
3️⃣p2-4q<0,共轭复根 a±bi,y=eax(C1cosβx+C2sinβx)
根据题目已知条件如f(0)=1,x=3时取到极大值等,求出C
2.2.2 二阶常系数非齐次微分方程
第一步,是求它所对应齐次方程的通解
第二步,用待定系数法求非齐次方程的特解
求特解的两大类型,要不同的设法
第一类,下面这种形式的
y
′
′
+
p
y
′
+
q
y
=
p
n
(
x
)
e
a
x
y'' + py' + qy = p_{n}\left(x\right)e^{ax}
y′′+py′+qy=pn(x)eax
设y‘’=Qn(x)eaxxk,
Qn(x)由pn(x)确定,写成pn(x)的一般形式,如pn(x)=2x,Qn(x)设成ax+b
k由a和第一步求通解的根一起确定,下表为k的确定
由a与r1,2的关系确定k的取值 | k的取值 |
---|---|
a≠r1,2 | k=0 |
a=r1或a=r2(要求r1≠r2) | k=1 |
a=r1=r2 | k=2 |
第二类,下面这种形式
y
′
′
+
p
y
′
+
q
y
=
e
a
x
[
p
m
cos
β
x
+
p
n
sin
β
x
]
y'' + py' + qy = e^{ax}\left[p_{m}\cos \beta x + p_{n}\sin βx\right]\:\:
y′′+py′+qy=eax[pmcosβx+pnsinβx]
设
y
=
x
k
e
a
x
[
Q
l
(
1
)
cos
β
x
+
Q
l
(
2
)
sin
β
x
]
y = x^{k}e^{ax}\left[Q_{l}^{\left(1\right)}\cos \beta x + Q_{l}^{\left(2\right)}\sin \beta x\right]\:\:
y=xkeax[Ql(1)cosβx+Ql(2)sinβx]
其中(1)和(2)表示两个不同的多项式
eax照抄
l=max{m,n],Q1,Q2,就设l次多项式,l=0,就设A(常数),l=1,就设ax+b
k由a和第一步求通解的共轭实根a±bi一起确定,下表为k的确定
由a与r1,2的关系确定k的取值 | k的取值 |
---|---|
a±bi≠r1,2 | k=0 |
a±bi=r1=r2 | k=1 |
2.3 【新考纲】三阶常系数齐次线性微分方程
3.计算大总结(更新中)
3.1 一阶微分方程计算思路
三种类型
比较简单的可变分离变量那种一眼就能看出来是。
看看是不是线性的,是线性的就是公式法计算。
不是线性的考虑一阶齐次。
3.2 高阶微分方程计算思路
高阶微分方程的计算中,什么时候用降阶法?
看看此时的微分方程是否缺x或者缺y,若是缺y,是较为简单的情况,设的是p=dy/dx,p’=dp/dx,若是缺x,较为复杂,设dy/dx=p,y’'=(dp/dy)p
4.知识补充
4.1 解的结构
注意在谈论通解和特解时,我们把特解也叫做解,但是通解就是通解。
4.2 齐次解推特征根,反推齐次微分方程
4.3 两个函数线性无关
题目来源: 660 219题
两个函数线性无关意味着
5.重难点题型总结(更新中)
5.1 已知某二阶线性常系数非齐次微分方程的两个解,和一个对应齐次方程的解,反求其微分方程
求解思路:反求微分方程(二阶常系数类型)分为两步,根据对应齐次方程的通解形式,反求出齐次方程的形式,然后设出齐次方程=f(x),把非齐次方程的特解代入设出来的齐次方程=f(x),求出f(x)。
题目来源:660第493题
5.2 【经典例题】已知某些条件和二阶常系数非齐次线性方程,求它的一个特解
大体思路:
先写出对应齐次线性方程的通解,再设出二阶常系数非齐次线性方程特解的形式,通过待定系数法,把设出的特解中的未知系数a,b求出来。
再写成非齐次线性方程通解的形式:对应齐通+一个非齐特解
把条件代入,即可求出通解中的未知系数c1,c2
等号右边是ex的形式
题目来源:880第6章基础填空
等号右边是sinx或cosx的形式
题目来源:880第6章基础填空
5.3 【经典例题】已知一个含有未知系数的二阶常系数非齐次线性方程和它的一个特解,求它的通解
大体思路
该类问题中的特解往往是由对应的齐通(含有条件)+一个纯粹特解加和而来的。通过写出本来应该设的特解形式,推断原先对应齐通的r值,进而确定齐通。
题目来源:880第6章基础填空
5.4 关于解的结构问题
5.5 【经典例题】利用微分方程求函数f(x)
5.5.1 与导数定义结合
凡是求f(x),大概率都是要计算微分方程
5.5.2 与实际几何结合列出微分方程
5.6 【经典重要例题】计算非常规微分方程
计算非常规微分方程,大体上有两种手段
- 自变量因变量切换
- 找新函数