Pytorch学习笔记(基础教程)

一:写在前面

本人是一名普通大二在读本科生,在学习深度学习方面的相关知识,从pytorch开始入手,这篇笔记是根据b站up主“我是土堆”的教程展开,如有遗漏或者不明白的地方,可以去原视频处观看,也欢迎留言讨论。

链接:【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】https://www.bilibili.com/video/BV1hE411t7RN?vd_source=bca1fe2b3fb6844fd58ee0163950bd4b

P1-P5章节内容为视频相关环境配置教程,在此就不过多赘述,有需要的朋友可以去参考其他博主的。(嫌麻烦的朋友建议直接tb找商家配置,会省去很多不必要的麻烦,本人亲身经历)

P6 

pytorch中读取数据主要分为两类

1.Dataset --  提供一种方式去获取数据及其label

2.Dataloader -- 为后面的网络提供不同的数据形式

所用数据集链接:

蚂蚁蜜蜂/练手数据集:链接: https://pan.baidu.com/s/1jZoTmoFzaTLWh4lKBHVbEA 密码: 5suq

P7

课程代码(部分)

from torch.utils.data import Dataset
from PIL import Image
import os

class MyData(Dataset):
    def __init__(self,root_dir, label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir ##定义为全局变量
        self.path = os.path.join(self.root_dir,self.label_dir)
        self.img_path = os.listdir(self.path) #获取所有图片的地址



    def __getitem__(self, idx):
        img_name = self.img_path[idx]
        img_item_path = os.path.join(self.root_dir,self.label_dir,img_name) #获取单个图片的地址
        img = Image.open(img_item_path)
        label = self.label_dir
        return img,label

    def __len__(self):
        return len(self.img_path) #输出数据集长度(数量)

root_dir = "G:/深度学习/pytorch(xiaotudui)/demo/hymenoptera_data/train"  ##指定根目录
ants_label_dir = "G:/深度学习/pytorch(xiaotudui)/demo/hymenoptera_data/train/ants"  #指定“蚂蚁”目录
bees_label_dir = "G:/深度学习/pytorch(xiaotudui)/demo/hymenoptera_data/train/bees"  #指定“蜜蜂”目录
ants_dataset = MyData(root_dir,ants_label_dir)
bees_dataset = MyData(root_dir,bees_label_dir)

print(ants_dataset[0]) #查看“蚂蚁”第一张图片数据

img, label = ants_dataset[0]
img.show()   #打开“蚂蚁”第一张图片


print(bees_dataset[0]) #查看“蜜蜂”第一张图片数据

img, label = bees_dataset[0]
img.show()   #打开“蜜蜂”第一张图片

train_dataset = ants_dataset + bees_dataset  #将“蚂蚁”数据集与“蜜蜂”数据集集合成一个数据集   顺序为“蚂蚁”+“蜜蜂”

Tensorboard使用

Tensorboard(1)

from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter("logs")

#定义y = x
for i in range(100):
    writer.add_scalar("y = x", i, i)

writer.close()

打开图表

运行代码后,在左侧会出现logs文件夹(如下)

在终端输入

tensorboard --logdir=logs

会出现如下情况

随后点击链接即可打开图表

也可输入

tensorboard --logdir=logs --port=6007

进行参数的设定,避免多人共同打开错误

注意:如果命名同一个函数,多次运行,会出现图像拟合错误

如出现这种情况,将logs文件夹下生成文件删除并重新运行正确代码即可

Tensorboard(2)

writer.add_image()读取数据为numpy型数据

课程代码

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")
image_path = "G:\深度学习\pytorch(xiaotudui)\demo\练手数据集/train/ants_image/0013035.jpg"
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)

writer.add_image("train", img_array, 1, dataformats='HWC')


for i in range(100):
    writer.add_scalar("y = 2x", 2*i, i) #y = x

writer.close()

Transforms使用

Transforms(1)

transform像一个工具箱,我们将需要处理的图片经过其中的工具进行处理,可以得到我们想要的结果

因python环境会把“\”解释为转义字符,所以up主在视频中讲解了绝对路径中“\”会出现的问题,本人在这里有一个解决办法,即将路径中所有“\”换成“/”即可

如何使用tensor格式

from PIL import Image
from torchvision import transforms


#绝对路径 "G:\深度学习\pytorch(xiaotudui)\demo\练手数据集\train\ants_image\0013035.jpg"
#相对路径  “练手数据集/train/ants_image/0013035.jpg"

img_path = "练手数据集/train/ants_image/0013035.jpg"
img = Image.open(img_path)

# 1 transforms该如何使用 (python)
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)

print(tensor_img)

这段代码实现了将img_path路径对应的图片转换成tensor格式

输出结果为

实际常用用途

Transforms(2)

tensor格式包含了神经网络中所需理论基础的参数

课程代码

from torch.utils.data import Dataset, DataLoader
from PIL import Image
import os
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter

#绝对路径 "G:\深度学习\pytorch(xiaotudui)\demo\练手数据集\train\ants_image\0013035.jpg"
#相对路径  “练手数据集/train/ants_image/0013035.jpg"

img_path = "练手数据集/train/ants_image/0013035.jpg"
img = Image.open(img_path)

writer = SummaryWriter("logs")

tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)

writer.add_image("Tensor_img", tensor_img)

writer.close()

常见的Transforms

from PIL import Image
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter

img_path = "练手数据集/train/ants_image/0013035.jpg"
img = Image.open(img_path)
writer = SummaryWriter("logs")

1.Totensor

#Totensor
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
writer.add_image("Tensor_img", tensor_img)

2.Normalize(归一化)

#Normalize
print(tensor_img[0][0][0])
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm)

归一化公式为:

output[channel] = (input[channel] - mean[channel]) / std[channel]

归一化前后输出结果对比:

3.Resize(对图片进行放大缩小)

#Resize
print(img.size)
trans_resize = transforms.Resize((512,512))
# img PIL -> resize -> img_resize PIL
img_resize = trans_resize(img)
# img_resize PIL -> totensor -> img_resize tensor
img_resize = tensor_trans(img_resize)
writer.add_image("Resize",img_resize)
print(img_resize)

运行结果:

4.Compose

#Compose -> resize -2
trans_resize_2 = transforms.Resize(512)
#PIL -> PIL -> tensor
trans_compose = transforms.Compose([trans_resize_2,tensor_trans])
img_resize_2 = trans_compose(img)
writer.add_image("Resize",img_resize_2,1)

5.RandomCrop(随机裁剪)

#RandomCrop
trans_random = transforms.RandomCrop(512)
trans_compose_2 = transforms.Compose([trans_random,tensor_trans])
for i in range(10):
    img_crop = trans_compose_2(img)
    writer.add_image("RandomCrop",img_crop,i)

注意:使用RandomCrop进行裁剪时,裁剪尺寸需小于图片大小,若报错,可将代码中512调小重试

总结使用方法

关注输入和输出类型,多看官方文档

关注方法需要什么函数

不知道类型时

print;print(type());debug

Torchvision中的数据集使用

下载CIFAR10数据集

import torchvision

train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False,  download=True)

使用数据集

import torchvision
from torch.utils.tensorboard import SummaryWriter

dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])

train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transform, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False,  transform=dataset_transform, download=True)

# print(test_set[0])
# print(test_set.classes)
#
# img, target = test_set[0]
# print(img)
# print(target)
# print(test_set.classes[target])
# img.show()
#
# print(test_set[0])

writer = SummaryWriter("p10")
for i in range(10):
    img, target = test_set[i]
    writer.add_image("test_set", img, i)

writer.close()

DataLoader的使用

测试数据集中第一张图片及target

import torchvision

# 准备的测试数据集
from torch.utils.data import DataLoader


test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)

各个参数作用

  • dataset:表示要加载的数据集,可以是一个PyTorch的Dataset对象。
  • batch_size:表示每个batch中的样本数,一般来说,batch_size越大,模型训练的效率越高,但同时也会占用更多的内存。一般建议使用2的幂次方作为batch_size,例如64、128等。(举例说明,如果你有一个包含 1000 个测试样本的数据集,并且设置 batch_size 为 64,那么 DataLoader 将会将这 1000 个样本分成若干个大小为 64 的批次,最后一个批次可能会包含不足 64 个样本。)
  • shuffle:表示是否在每个epoch开始的时候打乱数据集。如果为True,每个epoch开始时数据集都会被重新打乱,这样可以避免模型对数据集中顺序的依赖,从而提高模型的泛化能力。
  • num_workers:表示用于数据加载的子进程数。如果设置为0,表示数据将在主进程中加载;如果设置为大于0的值,表示数据将在多个子进程中并行加载,可以加快数据加载的速度。一般建议将其设置为CPU核心数的一半左右。
  • drop_last:表示在数据集不能被batch_size整除时,是否丢弃最后一个batch。如果为True,表示丢弃最后一个batch,否则最后一个batch的大小可能小于batch_size。

神经网络的基本使用

前向传播

官方forward流程

输出比输入加一的简单神经网络

# 作者:EternalAurora
import torch
from torch import nn


class Aurora(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input + 1
        return output


aurora = Aurora()
x = torch.tensor(1.0)
output = aurora(x)
print(output)

卷积

卷积操作是深度学习神经网络中的基础操作,建议还不知道是什么意思的同学先去学一下什么是卷积,本文在此不做过多赘述

实现上述操作代码

import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])  #输入二维矩阵

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])  #卷积核

input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))  #尺寸转换

output = F.conv2d(input,kernel,stride=1)  #采用cov2d卷积
print(output)

conv2d参数讲解:

stride:

上述conv2d中stride参数设置为1,代表卷积核移动步长为1,若改为2,输出结果也会发生相应变化

output = F.conv2d(input,kernel,stride=1)  #步长为1
print(output)
output = F.conv2d(input,kernel,stride=2)  #步长为2
print(output)

输出结果

padding

对原始矩阵进行边缘填充操作,padding为1时,原始输入矩阵会变成如下样式,随后进行上述卷积操作

新的输出结果

output3 = F.conv2d(input,kernel,stride=1,padding=1)  
print(output3)

神经网络-卷积层

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True) #准备数据集
dataloader = DataLoader(dataset, batch_size=64)

class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        return x

aurora = Aurora()

writer = SummaryWriter("./logs")

step = 0
for data in dataloader:
    imgs, targets = data
    output = aurora(imgs)
    print(imgs.shape)
    print(output.shape)
    # torch.Size([64, 3, 32, 32])
    writer.add_images("input", imgs, step)
    # torch.Size([64, 6, 30, 30])  -> [xxx, 3, 30, 30]

    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images("output", output, step)

    step = step + 1

writer.close()

对CIFAR10数据集进行卷积操作,并将将3通道转换成6通道

神经网络-池化层(最大池化)

参数

ceil_mode

代码

import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]],dtype=torch.float32)

input = torch.reshape(input,(-1,1,5,5))

class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output

aurora = Aurora()
output = aurora(input)
print(output)

结果

self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=False)

作用

保留数据特征,减少数据量,增加训练速度

神经网络-非线性激活

Relu-大于等于0的数返回原值,小于0的数取0

inplace=True:对原变量进行替换

inplace=Flase: 不对原变量进行替换(默认)

import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input = torch.tensor([[1, -0.5],
                      [-1, 3]])

input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)

class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.relu1 = ReLU()

    def forward(self, input):
        output = self.relu1(input)
        return output

aurora = Aurora()
output = aurora(input)
print(output)

运行结果

神经网络-线性层及其他层介绍

线性层

import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input = torch.tensor([[1, -0.5],
                      [-1, 3]])

input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)

dataset = torchvision.datasets.CIFAR10("./dataset", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset, batch_size=64)

class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.relu1 = ReLU()
        self.sigmoid1 = Sigmoid()

    def forward(self, input):
        output = self.sigmoid1(input)
        return output

aurora = Aurora()

writer = SummaryWriter("./logs")
step = 0
for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, global_step=step)
    output = aurora(imgs)
    writer.add_images("output", output, step)
    step += 1

writer.close()

torch.flatten()

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64, drop_last=True)

class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.linear1 = Linear(196608, 10)

    def forward(self, input):
        output = self.linear1(input)
        return output

aurora = Aurora()

for data in dataloader:
    imgs, targets = data
    print(imgs.shape)
    output = torch.flatten(imgs)
    print(output.shape)
    output = aurora(output)
    print(output.shape)

结果:

神经网络-搭建小实战


复刻CIFAR -10神经层

class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x

输入一个数据(64,3,32,32)

在tensorboard中查看神经网络

writer = SummaryWriter("./logs_seq")
writer.add_graph(aurora, input)
writer.close()

损失函数与反向传播

LossFuction

1:计算实际输出与目标之间的差距

2:为我们更新输出提供一定的依据

L1Loss:

import torch
from torch.nn import L1Loss
from torch import nn

inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss = L1Loss(reduction='sum') #采用损失求和
result = loss(inputs, targets)

print(result)

MSELOSS(平方差)

loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)

print(result_mse)

CrossEntropyLoss

x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)

反向传播

尝试如何调整神经网络中的参数才会导致最终的loss变小(因为从loss开始推导参数,和网络的顺序相反,所以叫反向传播)

梯度可以理解为斜率

优化器

torch.optim

dataloader = DataLoader(dataset, batch_size=1)

class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


loss = nn.CrossEntropyLoss()
aurora = Aurora()
optim = torch.optim.SGD(aurora.parameters(), lr=0.01) #定义优化器 设置学习速率为0.01
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = aurora(imgs)
        result_loss = loss(outputs, targets)
        optim.zero_grad()   #梯度设置为0
        result_loss.backward() #反向传播
        optim.step()
        running_loss = running_loss + result_loss  #每一轮整体误差的总和
    print(running_loss)

现有网络模型的使用及修改


pretrained=False时,使用默认参数

pretrained=True时,使用数据集中训练好的参数

对vgg_true进行输出线性层修改,将1000改为10

vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))

对vgg_flase进行输出线性层修改,将1096改为10

vgg16_false.classifier[6] = nn.Linear(4096, 10)

总代码

import torchvision
import os

from torch import nn

os.environ['TORCH_HOME'] = 'G:\深度学习\pytorch(xiaotudui)/vgg16' #修改模型下载路径


vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True)
print(vgg16_true)

vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))
print(vgg16_true)

print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096, 10)
print(vgg16_false)

网络模型的保存与读取

方式一:

import torch
import torchvision
from torch import nn

vgg16 = torchvision.models.vgg16(pretrained=False)

# 保存方式1,模型结构+模型参数
torch.save(vgg16, "vgg16_method1.pth")
import torch

#方式一 -> 保存方式1,加载模型
model = torch.load("G:\深度学习\pytorch(xiaotudui)\demo/vgg16_method1.pth")
print(model)

注意:

使用方式一时,在进行加载自己的网络模型时,会报错,无法访问到定义的方式

解决方法:

一:将网络模型复制到加载模型的代码页中(较麻烦,不用)

二:使用from model_save(编写网络模型的代码页) import *   ,将所有定义引入到新的代码页

方式二

#保存方式2,模型参数(官方推荐)
torch.save(vgg16.state_dict(), "vgg16_method2.pth")
#方式二 -> 保存方式2,加载模型
model = torch.load("G:\深度学习\pytorch(xiaotudui)\demo/vgg16_method2.pth")
print(model)

注意:

方式二会将模型以字典的形式进行保存,所以加载时需要将字典形式还原

vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
print(vgg16)

完整的模型训练套路:

import torchvision
from torch.utils.tensorboard import SummaryWriter

from model import *


#准备数据集
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True) #导入训练数据集
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)  #导入测试数据集

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))


# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

#创建网络模型
aurora = Aurora()

#损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(aurora.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10


# 添加tensorboard
writer = SummaryWriter("./logs_train")


for i in range(epoch):
    print("-------第 {} 轮训练开始-------".format(i+1))

    # 训练步骤开始
    aurora.train()  #让网络进入训练状态
    for data in train_dataloader:
        imgs, targets = data
        outputs = aurora(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad() #梯度清零
        loss.backward() #反向传播
        optimizer.step()

        total_train_step = total_train_step + 1 #训练次数+1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

        # 测试步骤开始
    aurora.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  #不进行梯度优化
        for data in test_dataloader:
            imgs, targets = data
            outputs = aurora(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率: {}".format(total_accuracy / test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(aurora, "aurora_{}.pth".format(i))
    print("模型已保存")
writer.close()
import torch
from torch import nn

# 搭建神经网络
class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


if __name__ == '__main__':
    aurora = Aurora()
    input = torch.ones((64, 3, 32, 32))
    output = aurora(input)
    print(output.shape)    #验证输出是否正确

利用GPU加速

网络模型,数据(输入,标注),损失函数可以用gpu加速

方式一:

xxx.cuda()

import torch
import torchvision
from torch import nn
from torch.utils.tensorboard import SummaryWriter

#from model import *


#准备数据集
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True) #导入训练数据集
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)  #导入测试数据集

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))


# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

#创建网络模型
class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

aurora = Aurora()
if torch.cuda.is_available():
    aurora=aurora.cuda()

#损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
# 优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(aurora.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10


# 添加tensorboard
writer = SummaryWriter("./logs_train")


for i in range(epoch):
    print("-------第 {} 轮训练开始-------".format(i+1))

    # 训练步骤开始
    aurora.train()  #让网络进入训练状态
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs=imgs.cuda()
            targets=targets.cuda()
        outputs = aurora(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad() #梯度清零
        loss.backward() #反向传播
        optimizer.step()

        total_train_step = total_train_step + 1 #训练次数+1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

        # 测试步骤开始
    aurora.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  #不进行梯度优化
        for data in test_dataloader:
            imgs, targets = data
            if torch.cuda.is_available():
                imgs=imgs.cuda()
                targets=targets.cuda()
            outputs = aurora(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率: {}".format(total_accuracy / test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(aurora, "aurora_{}.pth".format(i))
    print("模型已保存")
writer.close()

方式二:

device = torch.device("cuda:0")

xxx.to(device)

import torch
import torchvision
from torch import nn
from torch.utils.tensorboard import SummaryWriter

#from model import *

# 定义训练的设备
device = torch.device("cuda:0")

#准备数据集
from torch.utils.data import DataLoader

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True) #导入训练数据集
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)  #导入测试数据集

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))


# 利用 DataLoader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

#创建网络模型
class Aurora(nn.Module):
    def __init__(self):
        super(Aurora, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

aurora = Aurora()
aurora = aurora.to(device)

#损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
# learning_rate = 0.01
# 1e-2=1 x (10)^(-2) = 1 /100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(aurora.parameters(), lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10


# 添加tensorboard
writer = SummaryWriter("./logs_train")


for i in range(epoch):
    print("-------第 {} 轮训练开始-------".format(i+1))

    # 训练步骤开始
    aurora.train()  #让网络进入训练状态
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = aurora(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器优化模型
        optimizer.zero_grad() #梯度清零
        loss.backward() #反向传播
        optimizer.step()

        total_train_step = total_train_step + 1 #训练次数+1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss: {}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

        # 测试步骤开始
    aurora.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  #不进行梯度优化
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = aurora(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的Loss: {}".format(total_test_loss))
    print("整体测试集上的正确率: {}".format(total_accuracy / test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    torch.save(aurora, "aurora_{}.pth".format(i))
    print("模型已保存")
writer.close()

完整的模型验证套路

利用已经训练好的数据集,给它提供输入

import torch
import torchvision
from PIL import Image
from model import *

image_path = "G:\深度学习\pytorch(xiaotudui)\demo\imgs/airplane.png"
image = Image.open(image_path)
print(image)
image = image.convert('RGB')
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

model = torch.load("aurora_9.pth", map_location=torch.device('cpu')) #将用gpu训练的模型映射到cpu上
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
model.eval()
with torch.no_grad():
    output = model(image)

print(output)
print(output.argmax(1))

完结撒花~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值