轻量好用的神经网络模型可视化工具netron

深度学习 同时被 2 个专栏收录
12 篇文章 0 订阅
9 篇文章 0 订阅

轻量好用的神经网络模型可视化工具netron

简介

在复现别人的模型的时候,有时我们要知道一个模型的输入与输出名,可是有时作者并没有告诉我们,要我们自己去查,有了这个工具可以清晰地看见网络的输入输出名,具体的网络结构。相比tensorboard它更加轻量化,而且支持各种框架。

支持的框架

  • support for:
    ONNX (.onnx, .pb, .pbtxt),
    Keras (.h5, .keras),
    CoreML (.mlmodel),
    Caffe2 (predict_net.pb, predict_net.pbtxt),
    MXNet (.model, -symbol.json)
    TensorFlow Lite (.tflite).
  • experimental support for :
    Caffe (.caffemodel, .prototxt),
    PyTorch (.pth),
    Torch (.t7),
    CNTK (.model, .cntk),
    PaddlePaddle (model),
    Darknet (.cfg),
    scikit-learn (.pkl),
    TensorFlow.js (model.json, .pb)
    TensorFlow (.pb, .meta, .pbtxt).

安装方法

支持linux、windows、mac
查看:
https://github.com/lutzroeder/Netron
工具里面的说明进行安装,推荐用pip安装,很方便
如果不想安装的话也没问题,作者提供了一个在线view的网页,只要上传模型就能生成结构了
https://lutzroeder.github.io/netron/

测试

我在linux下安装netron,进行测试
先pip安装:

pip install netron

在这里插入图片描述
新建一个py文件,这里我命名为view_node.py
写入

import netron
modelPath = "googlenet.pb"
netron.start(modelPath)

并将要转换的文件放在py文件同目录下
在命令行窗口执行

python view_node.py

会出现:
在这里插入图片描述
此时图已经生成,打开浏览器,输入上面的网址:
http://localhost:8080
可以看见在这里插入图片描述
这是网络的全貌
进行缩放查看
在这里插入图片描述
可以看见输入输出的名了,而且网络结构也一目了然。

  • 12
    点赞
  • 5
    评论
  • 61
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使C语言开发的轻型开源深度学习框架,依赖少,可移植性,可以作为很的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2021 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值