题目:
Given a non-empty integer array of size n, find the minimum number of moves required to make all array elements equal, where a move is incrementing n - 1 elements by 1.
Example:
Input: [1,2,3] Output: 3 Explanation: Only three moves are needed (remember each move increments two elements): [1,2,3] => [2,3,3] => [3,4,3] => [4,4,4]
题意:
给定一个长度为n的非空整数数组,每次同时移动数组中的n-1个数,使他们增加1。问,需要最少移动多少步,可以使数组中各数字最后相等。
代码:
class Solution(object):
def minMoves(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
n = len(nums)
if n < 2 :
return 0
else :
min_num = min(nums) #找数组中最小的数
res = 0 #记录移动的步数
for i in range(n) :
res += nums[i]-min_num #每个数字减去最小数字的和,即为最终的需要移动的最小步数
return res
笔记:
思路:
假设数组为 a1,a2,a3,……,an,不妨假设a1<a2<a3<……<an。首先,将a1移到与a2相等,需要移动a2-a1步,序列变成a2,a2,a3+a2-a1,……,an+a2-a1。继续将a2移到与a3相等,需要移动 (a3+a2-a1)- a2 = a3-a1步,此时,序列变成a3+a2-a1,a3+a2-a1,a3+a2-a1,……an+a2-a1+a3-a1。如此往复下去,最后,将前n-1个数移动an-a1步,即将所有数字变成相等。即每一次移动,都需要移当前数字与最小数字相减的步数。
故总的移动步数为 a2-a1 + a3-a1 + …… + an-a1。其中,a1为数组中的最小的数。