股票预测与高维黑盒优化的创新方法
股票预测算法评估
在股票预测领域,为了评估算法的性能,采用了BSE30数据集。该数据集包含了孟买证券交易所前30家公司超过7万条记录,时间跨度为1年。评估是基于用于训练的记录数量进行的,结果如下表所示:
| 训练集大小(记录) | 算法 | 平均延迟 | F值 | 准确率(%) |
| — | — | — | — | — |
| 10k | GA | M | M | 90 |
| 10k | ARIMA | M | M | 90 |
| 10k | LSSVR | H | H | 91 |
| 10k | ICA - CCA - SVR | H | H | 93 |
| 10k | 提出的算法 | M | H | 96 |
| 20k | GA | M | M | 91 |
| 20k | ARIMA | M | M | 91 |
| 20k | LSSVR | H | H | 93 |
| 20k | ICA - CCA - SVR | H | H | 93 |
| 20k | 提出的算法 | H | H | 97 |
| 50k | GA | M | M | 93 |
| 50k | ARIMA | M | M | 93 |
| 50k | LSSVR | H | M | 93 |
| 50k | ICA - CCA - SVR | H | H | 95 |
| 50k | 提出的算法 | H | H | 97.5 |
| 70k | GA | M | M | 93 |
| 70k | ARIMA | M | M | 95 |
| 70k | LSSVR | H | M | 95 |
| 70k | ICA - CCA - SVR | H | H | 95 |
| 70k | 提出的算法 | H | H | 98.2 |
从表中可以明显看出,提出的QGA算法在F值和准确率方面优于简单GA、LSSVR和ARIMA模型。不过,由于Q学习和遗传优化过程中需要大量迭代,算法的整体时间复杂度增加,评估时平均延迟较高。但该算法的预测准确率非常高,预测误差可降至2%以下,与其他方法相比,误差降低了10%。
高维黑盒优化的新方法——ASGF
在高维黑盒优化领域,传统的基于梯度信息的优化方法在处理复杂问题时面临诸多挑战,如高维度、非凸性和对超参数的极度敏感性等。为了解决这些问题,提出了一种新的自适应随机无梯度(ASGF)方法。
背景知识
我们的目标是求解高维非凸目标函数 $f: R^d \to R$ 的全局极值,即 $\min_{x \in R^d} f(x)$ 。由于只能通过函数评估获取 $f(x)$ 的值,且梯度 $\nabla f(x)$ 不可访问,因此通常采用无导数或无梯度优化(GFO)方法。
为了处理这类问题,引入了高斯平滑的概念。设 $\sigma > 0$ 为平滑参数,$f_{\sigma}(x)$ 为 $f(x)$ 的高斯平滑,其表达式为:
$f_{\sigma}(x) = \frac{1}{\pi^{d/2}} \int_{R^d} f(x + \sigma \epsilon) e^{-|\epsilon|^2 / 2} d\epsilon = E_{\epsilon \sim N(0, I_d)} [f(x + \sigma \epsilon)]$
$f_{\sigma}(x)$ 保留了目标函数的重要特征,如凸性、Lipschitz常数,并且即使 $f(x)$ 不可微,$f_{\sigma}(x)$ 也总是可微的。问题 $\min_{x \in R^d} f(x)$ 可以替换为平滑后的版本 $\min_{x \in R^d} f_{\sigma}(x)$ 。$f_{\sigma}(x)$ 的梯度可以计算为:
$\nabla f_{\sigma}(x) = \frac{2}{\sigma \pi^{d/2}} \int_{R^d} \epsilon f(x + \sigma \epsilon) e^{-|\epsilon|^2 / 2} d\epsilon = \frac{2}{\sigma} E_{\epsilon \sim N(0, I_d)} [\epsilon f(x + \sigma \epsilon)]$
传统的GFO方法通过蒙特卡罗(MC)采样估计梯度,并对状态 $x$ 进行迭代更新:
$\nabla f_{\sigma}(x) \approx \frac{2}{\sigma M} \sum_{m = 1}^{M} \epsilon_m f(x + \sigma \epsilon_m)$
$x_{i + 1} = x_i - \frac{2\lambda}{\sigma M} \sum_{m = 1}^{M} \epsilon_m f(x_i + \sigma \epsilon_m)$
然而,MC方法收敛速度较慢,与 $M^{-1/2}$ 成正比,尽管收敛速度与维度 $d$ 无关。使用准MC采样或稀疏网格近似可能会有轻微改进,但高维域和非凸目标函数的组合使得这些GFO策略仅适用于低到中等维度的黑盒优化问题。
为了提高MC梯度估计的效率和准确性,还尝试了沿 $d$ 个正交方向解耦问题,以及使用一维高斯 - 埃尔米特求积法进行解耦积分的计算,但这些方法都存在一定的局限性,如需要大量的超参数调整。
ASGF算法
ASGF方法的主要流程如下:
1. 在迭代 $i$ 开始时,使用搜索方向 $\xi$ 和平滑参数 $\sigma$ ,根据公式计算沿方向 $\xi_j$ 的导数 $\nabla f_{\sigma}(x_i | \xi_j)$ ,并通过公式估计梯度替代 $\nabla f_{\sigma}(x_i)$ 。
2. 根据目标函数的局部特性选择学习率 $\lambda$ 。
3. 通过梯度下降步骤更新候选最小值:$x_{i + 1} = x_i - \lambda \nabla f_{\sigma}(x_i)$ 。
4. 更新搜索方向 $\xi$ 和平滑参数 $\sigma$ ,进入下一次迭代。
具体来说,ASGF方法有以下几个关键特点:
-
搜索方向的选择
:将搜索方向分为一个“主”方向和一组“辅助”方向。在每次迭代 $i$ 中,第一个方向 $\xi_1$ 设为 $f_{\sigma}(x_i)$ 的当前梯度估计,其他方向 $\xi_2, \ldots, \xi_d$ 用于补充 $\xi_1$ 形成 $R^d$ 中的随机正交基。这样既利用了梯度方向的效率,又保留了随机搜索方向的探索能力。
-
自适应选择积分点数
:对于“主”方向 $\xi_1$ ,使用自适应方案确定合适的积分点数。具体来说,通过增加积分点数 $m \in {3, 5, 7, \ldots}$ 来估计 $\nabla f_{\sigma}(x | \xi_1)$ ,直到获得两个相差小于某个阈值 $\epsilon_m$ 的估计值。对于“辅助”方向 $\xi_2, \ldots, \xi_d$ ,使用固定的少量积分点数。
-
自适应学习率
:学习率 $\lambda$ 是根据平滑参数 $\sigma$ 和之前迭代中沿“主”方向计算的Lipschitz常数的滑动平均值 $L_{\nabla}$ 推导得出的。具体公式为:
$L_{\nabla} \leftarrow (1 - \gamma_L) L_1 + \gamma_L L_{\nabla}$
$\lambda = \sigma / L_{\nabla}$
其中,$0 \leq \gamma_L < 1$ 是平滑因子。这种方法确保在目标函数 $f$ 的平滑程度较高时采取较大的步长,而在“主”方向的局部几何形状不太规则时采取较小的步长。
- 大规模可扩展性 :由于方向导数和局部Lipschitz常数的计算可以在多达 $m_1 + \ldots + m_d$ 个工作节点上并行分布,因此ASGF方法具有大规模可扩展性。并行工作节点之间只需要通信分配给它们的积分点处的目标函数值,在实际应用中可以实现显著的加速。
下面是ASGF方法的流程图:
graph TD;
A[开始迭代i] --> B[计算导数∇fσ(xi|ξj)];
B --> C[估计梯度替代∇fσ(xi)];
C --> D[选择学习率λ];
D --> E[更新候选最小值xi+1];
E --> F[更新搜索方向ξ和平滑参数σ];
F --> G[进入下一次迭代];
综上所述,ASGF方法在高维黑盒优化问题中具有显著的优势,能够有效提高优化性能,并且对超参数的依赖较小。在股票预测和高维黑盒优化等领域,这些新方法为解决复杂问题提供了新的思路和途径。
股票预测与高维黑盒优化的创新方法
ASGF方法的优势总结
ASGF方法在高维黑盒优化中展现出多方面的优势,具体如下:
1.
广泛适用性
:可以使用固定的一组超参数成功应用于广泛的优化问题,减少了传统方法中大量的超参数调整工作。
2.
高效性与探索性平衡
:通过将搜索方向分为“主”方向和“辅助”方向,既利用了梯度方向的高效性,又保留了随机搜索方向的探索能力,提高了优化效率。
3.
自适应特性
:自适应选择积分点数和学习率,能够根据目标函数的局部几何形状动态调整,在不同的优化设置中都能表现出色。
4.
大规模可扩展性
:计算过程可以并行分布,减少了计算时间,适合处理大规模的优化问题。
未来展望与建议
虽然提出的QGA算法在股票预测中表现出色,ASGF方法在高维黑盒优化中具有显著优势,但仍有一些方面可以进一步改进和探索。
股票预测方面
- 采用更快的算法 :由于QGA算法在Q学习和遗传优化过程中需要大量迭代,导致时间复杂度增加和平均延迟较高。未来可以研究和使用更快的算法,以提高预测效率。
- 评估更多技术指标 :可以考虑评估更多的技术指标,以获取更准确的股票预测模型。
- 使用更大的数据集 :在更大的数据集上进行测试和验证,以提高算法的泛化能力和预测结果的可靠性。
高维黑盒优化方面
- 进一步优化算法 :虽然ASGF方法已经取得了较好的效果,但仍可以进一步优化算法,提高其在更复杂问题上的性能。
- 结合其他技术 :可以考虑将ASGF方法与其他优化技术相结合,以发挥各自的优势,实现更好的优化效果。
总结
本文介绍了股票预测和高维黑盒优化领域的创新方法。在股票预测中,提出的QGA算法在F值和准确率方面优于传统模型,虽然存在时间复杂度高的问题,但预测误差显著降低。在高维黑盒优化中,ASGF方法通过高斯平滑、自适应搜索方向、积分点数和学习率的选择,以及大规模可扩展性,有效解决了传统方法面临的挑战,具有广泛的应用前景。
以下是股票预测算法和高维黑盒优化方法的对比表格:
| 领域 | 方法 | 优点 | 缺点 |
| — | — | — | — |
| 股票预测 | QGA算法 | F值和准确率高,预测误差低 | 时间复杂度高,平均延迟高 |
| 高维黑盒优化 | ASGF方法 | 广泛适用性,高效性与探索性平衡,自适应特性,大规模可扩展性 | 可进一步优化 |
为了更清晰地展示股票预测和高维黑盒优化的整体流程,下面给出一个mermaid格式的流程图:
graph LR;
A[股票预测] --> B[选择数据集];
B --> C[训练算法];
C --> D[评估结果];
D --> E[改进算法];
F[高维黑盒优化] --> G[定义目标函数];
G --> H[选择优化方法(ASGF)];
H --> I[进行优化];
I --> J[评估优化结果];
J --> K[进一步优化算法];
通过这些创新方法,我们在股票预测和高维黑盒优化领域取得了重要进展,但未来仍有许多工作需要继续开展,以不断提高算法的性能和应用效果。
超级会员免费看
823

被折叠的 条评论
为什么被折叠?



