矩阵的 Jordan 标准型

如果把矩阵化成对角矩阵,关于矩阵的函数计算问题就会大大简化。但一般的矩阵未必与对角矩阵相似。
矩阵的标准型有多重,Jordan (约当)标准型是最接近对角矩阵的形式,在控制理论中经常用到。

存在条件:

ACnx , 其特征多项式可以写成如下形式:

φ(λ)=(λλ1)m1(λλs)ms

其中: m1+m2++ms=n , 那么,矩阵 A 可以经过相似变换,化成唯一的 Jordan 标准型 J 。即存在可逆矩阵 P, 满足

P1AP=J

A 有Jordan 分解:
A=PJP1

J=diag(J1(λ1),J2(λ2),,Js(λs))

Ji(λi),i=1,2,,s 被称为 Jardon 块。

对应的:

P=(P1,P2,,Ps)

Ji(λi)=diag(J1(λi),J2(λi),,Jki(λi),)

Jki(λi),i=1,2,,ki 被称为 Jardon 子块。

对应的:

Pi=(Pi(1),Pi(2),,Pi(ki)

Jki(λi)=λi0001λi0001λi00001λiCkiki

求解方法:

1、求矩阵的特征值 λi 及每个特征值的重数 mi

计算特征值 λi 的指标 ki , 即 rank(AλiI)ki=rank(AλiI)ki+1 成立的最小正整数 ki ,也就是 λi 对应的约当块的最大阶数。

2、计算特征值 λi 对应的Jardon 块的个数及阶数。

rt=rank(AλiI)t,t=0,1,2,,ki

δt=rt1+rt+12rt

δt λi 对应的 t 阶约当块 的个数Jt(λi

3、计算 P 矩阵。

先求 Pi,i=1,2,,s

先求 Pit,t=1,2,,ki

t 阶约旦子块,求

(AλiI)tx=0
的非零解(唯一) x ,

Pit=(x,(AλiI)x,,(AλiI)t1x)

进过组合,就可以得到变换矩阵 P <script type="math/tex" id="MathJax-Element-7880">P</script>

### 使用传递函数求解矩阵约旦标准型 对于给定的传递函数,可以将其转化为状态空间表示形式,进而得到系统的动态特性描述。一旦获得了状态空间模型,就可以进一步分析并计算其约旦标准型。 #### 将传递函数转换为状态空间表达式 考虑一个简单的例子: 假设有一个传递函数 \( W(s)=\frac{10s-10}{s^{3}+4s^{2}+3s}\),可以通过MATLAB命令`tf2ss`或直接构建状态变量的方式来获得相应的状态空间表达式[^3]。 ```matlab num = [10, -10]; den = [1, 4, 3, 0]; [A, B, C, D] = tf2ss(num, den); disp('State-space representation:') disp('A matrix:') disp(A) disp('B matrix:') disp(B) disp('C matrix:') disp(C) disp('D matrix:') disp(D) ``` 上述代码片段展示了如何利用MATLAB内置函数将传递函数转换成状态空间的形式。这里\( A \), \( B \), \( C \), 和 \( D \)分别代表系统矩阵、输入矩阵、输出矩阵以及直连项矩阵。 #### 计算约旦标准型 有了状态空间表达式的各个矩阵后,下一步就是找到变换后的约旦标准型。这通常涉及到寻找合适的相似变换矩阵P使得原始的状态矩阵A变为Jordan形J: \[ J=P^{-1}AP \] 在MATLAB中可以直接调用`jordan`函数完成此操作: ```matlab [V, J] = jordan(A); disp('Jordan canonical form of the state matrix A is:') disp(J) disp('Transformation matrix V is:') disp(V) ``` 这段代码会返回两个结果:一个是新的约旦标准型矩阵\( J \),另一个是用来执行这个变化的可逆矩阵\( P=V \)。 通过这种方式,可以从传递函数出发逐步推导出系统的约旦标准型,这对于理解系统的内在结构及其行为模式非常有用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值