第一节、Python基础之环境搭建

目录

一、Anaconda 下载:

二、Windows安装步骤如下

三、Anaconda 环境的基本操作

四、清理(conda瘦身)

五、复制/重命名/删除env环境

六、conda自动开启/关闭激活

七、conda更改数据源:

八、pip数据源管理

九、pip安装包管理:

十、pip和conda批量导出、安装组件(requirements.txt)

十一、常用软件安装

 十二、jupyter notebook默认工作目录设置

总结:


一、Anaconda 下载:

         官网下载地址:   Anaconda | Individual Edition     

                                 不建议使用,下载速度慢。

         B站下载地址:  Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

                                  此地址国内服务器,下载速度快。

二、Windows安装步骤如下

1.双击点击安装包如下:

 2、点击下一步“Next”按钮进入下一步:

 3、点击“I Agree”同意条款,进入下一步:

 4、选择“All Users(requires admin privileges)”电脑多有用户都可用,然后点击“Next”按钮如下:

 5、选择好安装目录后,点击“Next”按钮如下:

 6、两个复选框全选,第一个将ananconda添加到系统路径环境变量,第二个将anaconda注册为系统python。点击“Install”进入安装:

 

 7、安装完成后点击“Next”,进入下一步:

 

 8、继续点击“Next”进入下一步:

 9、默认选线,点击“Finish”完成安装。

三、Anaconda 环境的基本操作

1、conda环境使用基本命令:

conda update -n base conda        #update最新版本的conda
conda create -n xxxx python=3.5   #创建python3.5的xxxx虚拟环境
conda activate xxxx               #开启xxxx环境
conda deactivate                  #关闭环境
conda env list                    #显示所有的虚拟环境
conda info --envs                 #显示所有的虚拟环境

2.查看指定包可安装版本信息命令

查看tensorflow各个版本:(查看会发现有一大堆TensorFlow源,但是不能随便选,选择可以用查找命令定位)

anaconda search -t conda tensorflow

3、查看指定包可安装版本信息命令

anaconda show <USER/PACKAGE> 
# 查看指定anaconda/tensorflow版本信息
anaconda show tensorflow
# 输出结果会提供一个下载地址,使用下面命令就可指定安装1.8.0版本tensorflow
conda install --channel https://conda.anaconda.org/anaconda tensorflow=1.8.0 

4、更新、卸载安装包、删除虚拟环境

conda list         #查看已经安装的文件包
conda list  -n xxx       #指定查看xxx虚拟环境下安装的package
conda update xxx   #更新xxx文件包
conda uninstall xxx   #卸载xxx文件包
conda remove -n xxxx --all   //删除xxxx虚拟环境

四、清理(conda瘦身)

conda clean就可以轻松搞定!

    第一步:通过conda clean -p来删除一些没用的包,这个命令会检查哪些包没有在包缓存中被硬依赖到其他地方,并删除它们。

    第二步:通过conda clean -t可以将删除conda保存下来的tar包。

conda clean -p      //删除没有用的包
conda clean -t      //删除tar包
conda clean -y --all //删除所有的安装包及cache

五、复制/重命名/删除env环境

Conda是没有重命名环境的功能的, 要实现这个基本需求, 只能通过愚蠢的克隆-删除的过程。
切记不要直接mv移动环境的文件夹来重命名, 会导致一系列无法想象的错误的发生!

//克隆oldname环境为newname环境
conda create --name newname --clone oldname 
//彻底删除旧环境
conda remove --name oldname --all 
# 注意:必须在base环境下进行以上操作,否则会出现各种莫名的问题。

六、conda自动开启/关闭激活

conda activate   #默认激活base环境
conda activate xxx  #激活xxx环境
conda deactivate #关闭当前环境
conda config --set auto_activate_base false  #关闭自动激活状态
conda config --set auto_activate_base true  #关闭自动激活状态

有时conda或pip源下载速度太慢,install a过程中会中断连接导致压缩包下载不全,
此时,我们可以用浏览器等工具先下载指定包再用conda或pip进行本地安装

#pip 安装本地包
pip install   ~/Downloads/a.whl
#conda 安装本地包
conda install --use-local  ~/Downloads/a.tar.bz2

七、conda更改数据源:

解决conda/pip install 下载速度慢

#显示目前conda的数据源有哪些
conda config --show channels
#添加数据源:例如, 添加清华anaconda镜像:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
#删除数据源
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

八、pip数据源管理

#显示目前pip的数据源有哪些
pip config list
pip config list --[user|global] # 列出用户|全局的设置
pip config get global.index-url # 得到这key对应的value 如:https://mirrors.aliyun.com/pypi/simple/

# 添加
pip config set key value
#添加数据源:例如, 添加USTC中科大的源:
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple
#添加全局使用该数据源
pip config set global.trusted-host https://mirrors.ustc.edu.cn/pypi/web/simple

# 删除
pip config unset key
# 例如
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

#搜索
pip search flask  #搜素flask安装包

# 升级pip
pip install pip -U

pip国内数据源:

阿里云                    http://mirrors.aliyun.com/pypi/simple/
中国科技大学         https://pypi.mirrors.ustc.edu.cn/simple/ 
豆瓣(douban)         http://pypi.douban.com/simple/ 
清华大学                https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学  http://pypi.mirrors.ustc.edu.cn/simple/

九、pip安装包管理:

pip list #列出当前缓存的包
pip purge #清除缓存
pip remove #删除对应的缓存
pip help #帮助
pip install xxx #安装xxx包
pip uninstall xxx #删除xxx包
pip show xxx #展示指定的已安装的xxx包
pip check xxx #检查xxx包的依赖是否合适

十、pip和conda批量导出、安装组件(requirements.txt)

#  pip批量导出包含环境中所有组件的requirements.txt文件
pip freeze > requirements.txt
#  pip批量安装requirements.txt文件中包含的组件依赖
pip install -r requirements.txt
# conda批量导出包含环境中所有组件的requirements.txt文件
conda list -e > requirements.txt
# conda批量安装requirements.txt文件中包含的组件依赖
conda install --yes --file requirements.txt

十一、常用软件安装

常见问题解决办法:

1:failed ERROR conda.core.link:_execute(502):

conda install 软件时出现如下错误信息:
Preparing transaction: done
Verifying transaction: done
Executing transaction: 
failed ERROR conda.core.link:_execute(502):
# 解决方法:往往时权限不够,需要以管理员方式运行Anaconda prompt进行安装

2:conda创建环境时报错:NotWritableError: The current user does not have write permissions to a required path.

问题出现的主要原因:用户没有对.conda文件夹的读写权限,造成其原因是由于在安装conda时使用了管理员权限。

sudo chown -R xxx:xxx .conda    #xxx为自己的用户名/组

3、conda创建环境时报错:Collecting package metadata (current_repodata.json): failed ProxyError: Conda cannot proceed due to an error in your proxy configuration.
原因:主要是conda install xxx时,使用Ctrl+C强制中断安装xxx软件,然后修改了PC网络连接方式(代理连接改成了直连连接方式)

env | grep -i "_PROXY"
#可以看到还是原来的代理连接方式
#解决方法:
# 关闭当前终端,重新打开新的终端,然后就解决了问题

4、anaconda或conda不是内部命令:

首先检查安装目录是否有conda,如果没有重新安装,还没有的话最好换个镜像重新装系统,我之前就遇到怎么安装都无法生成Script目录。不是安装包的问题,因为在其他电脑上安装没问题,最后我换个镜像重新安装就好了。

 

 十二、jupyter notebook默认工作目录设置

1)在Anaconda Prompt终端中输入下面命令,查看你的notebook配置文件在哪里:

jupyter notebook --generate-config
#会生成文件C:\Users\用户\.jupyter\jupyter_notebook_config.py

2)打开jupyter_notebook_config.py文件通过搜索关键词:c.NotebookApp.notebook_dir,修改如下:

c.NotebookApp.notebook_dir = 'E:\\tf_models'     //修改到自定义文件夹

3)然后重启notebook服务器就可以了:注:其它方法直接命令到指定目录,Anaconda Prompt终端中输:jupyter notebook 目录地址

总结:

          这里给大家做了一下环境安装总结,我认为不用记,用的时候查下就行,一般就环境搭建用一次。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

35仍未老

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值