Fast R-CNN

1、整体思路

 

  • 将整张图片输入卷积网络得到特征图
  • 在原图中获取1000-2000个候选框
  • 将候选框映射到特征图获取每张候选框对应的特征区域
  • 将特征区域传入ROI池化层获得固定长度的特征向量
  • 通过两个全连接层生成ROI feature vector
  • 对ROI feature vector进行分类和回归

2、具体流程

3、创新点

  • 卷积不再是对每一个region proposal,而是对整个图像处理,避免了RCNN中的很多重复计算
  • ROIPooling的提出,避免了对提取的region proposals进行缩放,并且RoIPooling是可导的,使整个网络可以实现end-to-end learning
  • 把bbox regression放进了神经网络内部,与region分类合并成为一个multi-task模型,共享卷积特征,相互促进

4、不足

  • region proposal的提取仍然采用selective search,整个检测时间大多消耗在上面

5、加入我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值