函数递归(从小白进阶大白的第六天)

目录

一.最简单的递归函数

二.递归函数分析

2.1递归函数思想:

2.2递归函数限制条件

三.递归函数举例 

3.1递归解决

3.2非递归解决

目录

一.最简单的递归函数

二.递归函数分析

2.1递归函数思想:

2.2递归函数限制条件

三.递归函数举例 

3.1递归解决阶乘问题

3.2递归解决顺序打印一个整数的每一位 

四.递归与迭代 

4.1求n个斐波那契数


函数递归是什么?函数递归是一种解决问题的方法。函数递归是平常解决C语言问题令人眼前一亮的解决方法。

递归:一个函数在它的函数体内调用它的自身。执行递归函数将反复调用其自身,每调用一次就进入新的一层。递归函数必须有结束条件

一.最简单的递归函数

首先,先写一个最简单的递归函数来体验一下:

#include <stdio.h>

int main()
{
	printf("hehe\n");
	main();//在这里main函数实现了自己调用自己。
	return 0;
}
最简单的递归函数

上述代码中,main函数实现了自己调用自己,代码会陷入死循环,导致栈溢出(Stack overflow)而结束 。

二.递归函数分析

2.1递归函数思想:

把一个大型复杂问题层层转化为一个与原问题相似,但规模较小的子问题来求解;直到子问题不能再被拆分,那么递归就结束了,所以递归的思考方式就是大事化小的过程。

递归中的递就是递推的意思,归就是回归的意思。

2.2递归函数限制条件

  • 递归函数存在限制条件,当满足这个递归条件,递归函数便不再执行。
  • 每次递归函数执行后就会接近这个递归函数的限制条件。 

三.递归函数举例 

例1:求n的阶乘(不考虑溢出)

分析:n的阶乘就是1~n的数字累计相乘。同时,我们知道阶乘公式 n!= n * n(n - 1)! 

3.1递归解决阶乘问题

举例:

求n的阶乘

当 n==0的时候。我们知道阶乘为1,所以我们在这里分为两种情况: 

求n的阶乘

所以,我们可以按照这个思路去写代码啦!

#include <stdio.h>

int Fact(int n)
{
	if (0 == n)
	{
		return 1;
	}
	else
		return n * Fact(n - 1);
}

int main()
{
	int n = 0;
	int ret = 0;
	scanf("%d", &n);
	ret = Fact(n);
	printf("%d阶乘为%d\n", n, ret);
	return 0;
}

测试结果如下图: 

求n的阶乘

3.2递归解决顺序打印一个整数的每一位 

我们这个例子的要求,输入一个整数,按照顺序将整数以此打印出来。

比如:

顺序打印一个整数的每一位 

代码分析:这个题目的关键就是怎么得到它的每一位数?

1234 % 10就能得到4,然后1234 / 10得到123,这就相当于去掉了4。然后继续对123 % 10,就得到了3,再除10去掉3,以此类推不断的 % 10 和 / 10 操作,直到1234的每⼀位都得到。这样我们 有了灵感,我们发现其实⼀个数字的最低位是最容易得到的,通过%10就能得到。那我们就可以写代码了。

代码实现:

#include <stdio.h>

void My_print(int a)
{
	if (a > 9)
	{
		My_print(a / 10);
	}
	printf("%d ", a % 10);
}

int main()
{
	int a = 0;
	scanf("%d", &a);
	My_print(a);
	return 0;
}

我们拿图来表示一下: 

递归解决顺序打印一个整数的每一位 

四.递归与迭代 

递归是⼀种很好的编程技巧,但是和很多技巧⼀样,也是可能被误⽤的,就像求阶乘例子⼀样,看到推导的公式,很容易就被写成递归的形式:
求n的阶乘

但是在递归函数调⽤的过程中涉及⼀些运⾏时的开销。

在这里们引进函数栈帧在C语⾔中每⼀次函数调⽤,都要需要为本次函数调⽤在栈区申请⼀块内存空间来保存函数调⽤期间 的各种局部变量的值,这块空间被称为运⾏时堆栈,或者函数栈帧。 函数不返回,函数对应的栈帧空间就⼀直占⽤,所以如果函数调⽤中存在递归调⽤的话,每⼀次递归函数调⽤都会开辟属于⾃⼰的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。所以如果采⽤函数递归的⽅式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出(stack overflow)的问题。在后面我们会分享到函数栈帧。所以如果不想使用递归就得想其他的办法,通常就是迭代的方式(通常就是循环的方式)。

比如:计算n的阶乘,也是可以是1~n的数字累乘在⼀起。
#include <stdio.h>

int Fact(int n)
{
	int i = 0;
	int ret = 1;
	for (i = 1; i <= n; i++)
	{
		ret *= i;
	}
	 return ret;
}

int main()
{
	int n = 0;
	int ret = 0;
	scanf("%d", &n);
	ret = Fact(n);
	printf("%d阶乘为%d\n", n, ret);
	return 0;
}
上述代码是能够完成任务,并且效率是比递归的方式更好的。
 事实上,我们看到的许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更加清晰,但是这些问题的迭代实现往往比递归实现效率更⾼。当⼀个问题⾮常复杂,难以使用迭代的⽅式实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。

4.1求n个斐波那契数

我们很清楚的知道公式,那再写这个程序时,我们很轻松的就写出递归的方式来解决这一道题。。

#include <stdio.h>

int Fib(int n)
{
	if (n <= 2)
		return 1;
	else
		return Fib(n - 1) + Fib(n - 2);
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Fib(n);
	printf("%d", n);
}

但是,当我们输入一个较大的数字时,他的运行速度是我们难以接受的,这就说明递归比较低效。那是为什么呢?我们写一个代码来测试一下:

#include <stdio.h>

int count = 0;//计数器
int Fib(int n)
{
	if (n == 3)
		count++;//统计第3个斐波那契数被计算的次数
	if (n <= 2)
		return 1;
	else
		return Fib(n - 1) + Fib(n - 2);
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Fib(n);
	printf("%d\n", ret);
	printf("\ncount = %d\n", count);
	return 0;
}

我们运行结果如下图: 

当我们求第40个斐波那契数的时候,我们的第三个斐波那契数使用了39088169次。这是一个多么庞大的数字,这也证明了递归在解决斐波那契问题的效率低下。 

我们就得 想迭代的⽅式解决。我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从小到大计算就行了。
于是我们可以写出代码:
int Fib(int n)
{
	int a = 1;
	int b = 1;
	int c = 1;
	while (n > 2)
	{
		c = a + b;
		a = b;
		b = c;
		n--;
	}
	 return c;
}

int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Fib(n);
	printf("%d", ret);
}
迭代的方式去实现这个代码,效率就要⾼出很多了。
有时候,递归虽好,但是也会引⼊⼀些问题,所以我们⼀定不要迷恋递归,适可而止就好。
以上就是我这次所分享的全部内容,以上均是在我的电脑环境下得出的结果。若文中有什么不足或错误之处,请给予指正,谢谢。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白只会写bug

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值