改进yolo11-DLKA等200+全套创新点大全:水上浮标检测系统源码&数据集全套
1.图片效果展示
项目来源 人工智能促进会 2024.10.24
注意:由于项目一直在更新迭代,上面“1.图片效果展示”和“2.视频效果展示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)
(1)适配了YOLOV11的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。
(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。
(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。
(4)支持Web前端系统中的标题、背景图等自定义修改。
另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。
2.视频效果展示
3.背景
研究背景与意义
随着水上交通和海洋活动的不断增加,水上浮标作为重要的导航和安全设施,其检测与识别的准确性和实时性显得尤为重要。传统的浮标检测方法多依赖于人工巡检和简单的图像处理技术,这不仅效率低下,而且容易受到环境因素的影响,导致检测结果的不准确。因此,基于深度学习的自动化检测系统逐渐成为研究的热点。
在众多深度学习模型中,YOLO(You Only Look Once)系列因其高效的实时目标检测能力而受到广泛关注。YOLOv11作为该系列的最新版本,具备更强的特征提取能力和更快的推理速度,适合于复杂环境下的浮标检测任务。本研究旨在基于改进的YOLOv11模型,构建一个高效的水上浮标检测系统,以提高浮标的检测精度和响应速度。
本项目所使用的数据集包含1200张图像,涵盖了两类浮标:绿色浮标和红色浮标。这一数据集的多样性和丰富性为模型的训练提供了良好的基础,能够有效提升模型在不同环境和光照条件下的适应能力。通过对数据集的深入分析与处理,结合YOLOv11的改进策略,我们期望能够实现对水上浮标的高效、准确检测。
本研究不仅具有重要的理论意义,推动了目标检测技术在水上交通安全领域的应用,也具有实际应用价值,为水上交通管理、海洋资源监测等提供了技术支持,助力于提升海洋安全管理水平。通过实现自动化的浮标检测系统,我们能够更好地保障水上交通的安全,减少人工巡检的成本与风险,为海洋环境的可持续发展贡献力量。
4.数据集信息展示
4.1 本项目数据集详细数据(类别数&类别名)
nc: 2
names: [‘green_buoy’, ‘red_buoy’]
该项目为【目标检测】数据集,请在【训练教程和Web端加载模型教程(第三步)】这一步的时候按照【目标检测】部分的教程来训练
4.2 本项目数据集信息介绍
本项目数据集信息介绍
本项目所使用的数据集名为“buoys”,专门用于训练和改进YOLOv11的水上浮标检测系统。该数据集包含两类浮标,分别为绿色浮标(green_buoy)和红色浮标(red_buoy),其类别数量为2。这一分类设计旨在帮助模型更准确地识别和区分不同颜色的浮标,从而提高在水域环境中检测的准确性和效率。
“buoys”数据集的构建过程中,收集了大量在各种水域条件下拍摄的浮标图像,确保数据的多样性和代表性。这些图像涵盖了不同的光照条件、天气情况以及水面状态,力求模拟真实世界中可能遇到的各种场景。每张图像都经过精确标注,标注信息包括浮标的类别、位置及其边界框,以便于YOLOv11模型进行有效的训练和学习。
在数据集的准备过程中,特别注重了数据的平衡性,确保绿色浮标和红色浮标的样本数量相对均衡,以避免模型在训练过程中出现偏向某一类别的现象。此外,为了提高模型的泛化能力,数据集中还包含了一些经过数据增强处理的图像,如旋转、缩放和颜色调整等,这些处理有助于模型在面对不同环境时依然能够保持良好的检测性能。
通过使用“buoys”数据集,研究团队希望能够显著提升YOLOv11在水上浮标检测任务中的表现,使其在实际应用中能够更快速、准确地识别浮标,从而为水上交通安全、环境监测等领域提供更为可靠的技术支持。
5.全套项目环境部署视频教程(零基础手把手教学)
5.1 所需软件PyCharm和Anaconda安装教程(第一步)
5.2 安装Python虚拟环境创建和依赖库安装视频教程(第二步)
6.改进YOLOv11训练教程和Web_UI前端加载模型教程(零基础手把手教学)
6.1 改进YOLOv11训练教程和Web_UI前端加载模型教程(第三步)
按照上面的训练视频教程链接加载项目提供的数据集,运行train.py即可开始训练
Epoch gpu_mem box obj cls labels img_size
1/200 20.8G 0.01576 0.01955 0.007536 22 1280: 100%|██████████| 849/849 [14:42<00:00, 1.04s/it]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00, 2.87it/s]
all 3395 17314 0.994 0.957 0.0957 0.0843
Epoch gpu_mem box obj cls labels img_size
2/200 20.8G 0.01578 0.01923 0.007006 22 1280: 100%|██████████| 849/849 [14:44<00:00, 1.04s/it]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00, 2.95it/s]
all 3395 17314 0.996 0.956 0.0957 0.0845
Epoch gpu_mem box obj cls labels img_size
3/200 20.8G 0.01561 0.0191 0.006895 27 1280: 100%|██████████| 849/849 [10:56<00:00, 1.29it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|███████ | 187/213 [00:52<00:00, 4.04it/s]
all 3395 17314 0.996 0.957 0.0957 0.0845
项目数据集下载链接
7.原始YOLOv11算法讲解
YOLOv11是Ultralytics推出的YOLO系列最新版本,专为实现尖端的物体检测而设计。其架构和训练方法上进行了重大改进,使之不仅具备卓越的准确性和处理速度,还在计算效率上实现了一场革命。得益于其改进的主干和颈部架构,YOLOv11在特征提取和处理复杂任务时表现更加出色。在2024年9月27日,Ultralytics通过长达九小时的在线直播发布这一新作,展示了其在计算机视觉领域的革新。
YOLOv11通过精细的架构设计和优化训练流程,在保持高精度的同时,缩减了参数量,与YOLOv8m相比减少了22%的参数,使其在COCO数据集上的平均准确度(mAP)有所提升。这种效率的提高使YOLOv11非常适合部署在各种硬件环境中,包括边缘设备、云计算平台以及支持NVIDIA GPU的系统,确保在灵活性上的优势。
该模型支持广泛的任务,从对象检测、实例分割到图像分类、姿态估计和定向对象检测(OBB),几乎覆盖了计算机视觉的所有主要挑战。其创新的C3k2和C2PSA模块提升了网络深度和注意力机制的应用,提高了特征提取的效率和效果。同时,YOLOv11的改进网络结构也使之在复杂视觉任务上得以从容应对,成为各类计算机视觉任务的多功能选择。这些特性令YOLOv11在实施实时物体检测的各个领域中表现出众。
2024年9月27日,Ultralytics在线直播长达九小时,为YOLO11召开“发布会”
YOLO11 是 Ultralytics YOLO 系列实时物体检测器的最新版本,它以尖端的准确性、速度和效率重新定义了可能性。在之前 YOLO
版本的显著进步的基础上,YOLO11 在架构和训练方法方面进行了重大改进,使其成为各种计算机视觉任务的多功能选择。
YOLO11主要特点:
- 增强的特征提取:YOLO11 采用了改进的主干和颈部架构,增强了特征提取能力,可实现更精确的对象检测和复杂任务性能。
- 针对效率和速度进行了优化:YOLO11 引入了完善的架构设计和优化的训练流程,可提供更快的处理速度,并在准确度和性能之间保持最佳平衡。
- 更少的参数,更高的准确度:借助模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均准确度 (mAP),同时使用的参数比 YOLOv8m 少 22%,从而提高了计算效率,同时又不影响准确度。
- 跨环境的适应性:YOLO11 可以无缝部署在各种环境中,包括边缘设备、云平台和支持 NVIDIA GPU 的系统,从而确保最大的灵活性。
- 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿势估计还是定向对象检测 (OBB),YOLO11 都旨在满足各种计算机视觉挑战。
支持的任务和模式
YOLO11 以 YOLOv8 中引入的多功能模型系列为基础,为各种计算机视觉任务提供增强的支持:
Model | Filenames | Task | Inference | Validation | Training | Export |
---|---|---|---|---|---|---|
YOLO11 | yolol11n.pt, yolol11s.pt, yolol11m.pt, yolol11x.pt | Detection | ✅ | ✅ | ||
✅ | ✅ | |||||
YOLO11-seg | yolol11n-seg.pt, yolol11s-seg.pt, yolol11m-seg.pt, | |||||
yolol11x-seg.pt | Instance Segmentation | ✅ | ✅ | ✅ | ✅ | |
YOLO11-pose | yolol11n-pose.pt, yolol11s-pose.pt, yolol11m-pose.pt, | |||||
yolol11x-pose.pt | Pose/Keypoints | ✅ | ✅ | ✅ | ✅ | |
YOLO11-obb | yolol11n-obb.pt, yolol11s-obb.pt, yolol11m-obb.pt, | |||||
yolol11x-obb.pt | Oriented Detection | ✅ | ✅ | ✅ | ✅ | |
YOLO11-cls | yolol11n-cls.pt, yolol11s-cls.pt, yolol11m-cls.pt, | |||||
yolol11x-cls.pt | Classification | ✅ | ✅ | ✅ | ✅ |
简单的 YOLO11 训练和推理示例
以下示例适用于用于对象检测的 YOLO11 Detect 模型。
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n.pt")
# Train the model
train_results = model.train(
data="coco8.yaml", # path to dataset YAML
epochs=100, # number of training epochs
imgsz=640, # training image size
device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)
# Evaluate model performance on the validation set
metrics = model.val()
# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()
# Export the model to ONNX format
path = model.export(format="onnx") # return path to exported model
支持部署于边缘设备
YOLO11 专为适应各种环境而设计,包括边缘设备。其优化的架构和高效的处理能力使其适合部署在边缘设备、云平台和支持 NVIDIA GPU
的系统上。这种灵活性确保 YOLO11 可用于各种应用,从移动设备上的实时检测到云环境中的复杂分割任务。有关部署选项的更多详细信息,请参阅导出文档。
YOLOv11 yaml文件
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
YOLO11和YOLOv8 yaml文件的区别
改进模块代码
-
C3k2
class C3k2(C2f):
“”“Faster Implementation of CSP Bottleneck with 2 convolutions.”“”def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True): """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks.""" super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList( C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n) )
C3k2,它是具有两个卷积的CSP(Partial Cross Stage)瓶颈架构的更快实现。
类继承:
C3k2
继承自类C2f
。这表明C2f
很可能实现了经过修改的基本CSP结构,而C3k2
进一步优化或修改了此结构。
构造函数(__init__
):
-
c1
:输入通道。 -
c2
:输出通道。 -
n
:瓶颈层数(默认为1)。 -
c3k
:一个布尔标志,确定是否使用C3k
块或常规Bottleneck
块。 -
e
:扩展比率,控制隐藏层的宽度(默认为0.5)。 -
g
:分组卷积的组归一化参数或组数(默认值为 1)。 -
shortcut
:一个布尔值,用于确定是否在网络中包含快捷方式连接(默认值为True
)。
初始化:
super().__init__(c1, c2, n, short-cut, g, e)
调用父类C2f
的构造函数,初始化标准 CSP 组件,如通道数、快捷方式、组等。
模块列表(self.m
):
-
nn.ModuleList
存储C3k
或Bottleneck
模块,具体取决于c3k
的值。 -
如果
c3k
为True
,它会初始化C3k
模块。C3k
模块接收以下参数: -
self.c
:通道数(源自C2f
)。 -
2
:这表示在C3k
块内使用了两个卷积层。 -
shortcut
和g
:从C3k2
构造函数传递。 -
如果
c3k
为False
,则初始化标准Bottleneck
模块。
for _ in range(n)
表示将创建 n
个这样的块。
总结:
-
C3k2
实现了 CSP 瓶颈架构,可以选择使用自定义C3k
块(具有两个卷积)或标准Bottleneck
块,具体取决于c3k
标志。 -
C2PSA
class C2PSA(nn.Module):
“”"
C2PSA module with attention mechanism for enhanced feature extraction and processing.This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations. Attributes: c (int): Number of hidden channels. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations. Methods: forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations. Notes: This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules. Examples: >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5) >>> input_tensor = torch.randn(1, 256, 64, 64) >>> output_tensor = c2psa(input_tensor) """ def __init__(self, c1, c2, n=1, e=0.5): """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio.""" super().__init__() assert c1 == c2 self.c = int(c1 * e) self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c1, 1) self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))) def forward(self, x): """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor.""" a, b = self.cv1(x).split((self.c, self.c), dim=1) b = self.m(b) return self.cv2(torch.cat((a, b), 1))
C2PSA
模块是一个自定义神经网络层,带有注意力机制,用于增强特征提取和处理。
类概述
-
目的:
-
C2PSA
模块引入了一个卷积块,利用注意力机制来改进特征提取和处理。 -
它使用一系列
PSABlock
模块,这些模块可能代表某种形式的位置自注意力 (PSA),并且该架构旨在允许堆叠多个PSABlock
层。
构造函数(__init__
):
-
参数:
-
c1
:输入通道(必须等于c2
)。 -
c2
:输出通道(必须等于c1
)。 -
n
:要堆叠的PSABlock
模块数量(默认值为 1)。 -
e
:扩展比率,用于计算隐藏通道的数量(默认值为 0.5)。 -
属性:
-
self.c
:隐藏通道数,计算为int(c1 * e)
。 -
self.cv1
:一个1x1
卷积,将输入通道数从c1
减少到2 * self.c
。这为将输入分成两部分做好准备。 -
self.cv2
:另一个1x1
卷积,处理后将通道维度恢复回c1
。 -
self.m
:一系列PSABlock
模块。每个PSABlock
接收self.c
通道,注意头的数量为self.c // 64
。每个块应用注意和前馈操作。
前向方法:
-
输入:
-
x
,输入张量。 -
操作:
-
self.cv1(x)
应用1x1
卷积,将输入通道大小从c1
减小到2 * self.c
。 -
生成的张量沿通道维度分为两部分,
a
和b
。
-
a
:第一个self.c
通道。 -
b
:剩余的self.c
通道。
-
b
通过顺序容器self.m
,它是PSABlock
模块的堆栈。这部分经过基于注意的处理。 -
处理后的张量
b
与a
连接。 -
self.cv2
应用1x1
卷积,将通道大小恢复为c1
。
-
输出:
-
应用注意和卷积操作后的变换后的张量。
总结:
- C2PSA 是一个增强型卷积模块,它通过堆叠的
PSABlock
模块应用位置自注意力。它拆分输入张量,将注意力应用于其中一部分,然后重新组合并通过最终卷积对其进行处理。此结构有助于从输入数据中提取复杂特征。
网络结构
8.200+种全套改进YOLOV11创新点原理讲解
8.1 200+种全套改进YOLOV11创新点原理讲解大全
由于篇幅限制,每个创新点的具体原理讲解就不全部展开,具体见下列网址中的改进模块对应项目的技术原理博客网址【Blog】(创新点均为模块化搭建,原理适配YOLOv5~YOLOv11等各种版本)
8.2 精选部分改进YOLOV11创新点原理讲解
这里节选部分改进创新点展开原理讲解(完整的改进原理见上图和改进模块技术原理博客链接【如果此小节的图加载失败可以通过CSDN或者Github搜索该博客的标题访问原始博客,原始博客图片显示正常】
D-LKA Attention简介
自2010年代中期以来,卷积神经网络(CNNs)已成为许多计算机视觉应用的首选技术。它们能够从原始数据中自动提取复杂的特征表示,无需手动进行特征工程,这引起了医学图像分析社区的极大兴趣。许多成功的CNN架构,如U-Net、全卷积网络、DeepLab或SegCaps(分割胶囊),已经被开发出来。这些架构在语义分割任务中取得了巨大成功,先前的最新方法已经被超越。
在计算机视觉研究中,不同尺度下的目标识别是一个关键问题。在CNN中,可检测目标的大小与相应网络层的感受野尺寸密切相关。如果一个目标扩展到超出这个感受野的边界,这可能会导致欠分割结果。相反,与目标实际大小相比使用过大的感受野可能会限制识别,因为背景信息可能会对预测产生不必要的影响。
解决这个问题的一个有希望的方法涉及在并行使用具有不同尺寸的多个Kernel,类似于Inception块的机制。然而,由于参数和计算要求的指数增长,将Kernel大小增加以容纳更大的目标在实践中受到限制。因此,出现了各种策略,包括金字塔池化技术和不同尺度的扩张卷积,以捕获多尺度的上下文信息。
另一个直观的概念涉及将多尺度图像金字塔或它们的相关特征表示直接纳入网络架构。然而,这种方法存在挑战,特别是在管理训练和推理时间方面的可行性方面存在挑战。在这个背景下,使用编码器-解码器网络,如U-Net,已被证明是有利的。这样的网络在较浅的层中编码外观和位置,而在更深的层中,通过神经元的更广泛的感受野捕获更高的语义信息和上下文信息。
一些方法将来自不同层的特征组合在一起,或者预测来自不同尺寸的层的特征以使用多尺度的信息。此外,出现了从不同尺度的层中预测特征的方法,有效地实现了跨多个尺度的见解整合。然而,大多数编码器-解码器结构面临一个挑战:它们经常无法在不同尺度之间保持一致的特征,并主要使用最后一个解码器层生成分割结果。
语义分割是一项任务,涉及根据预定义的标签集为图像中的每个像素预测语义类别。这项任务要求提取高级特征同时保留初始的空间分辨率。CNNs非常适合捕获局部细节和低级信息,尽管以忽略全局上下文为代价。视觉Transformer(ViT)架构已经成为解决处理全局信息的视觉任务的关键,包括语义分割,取得了显著的成功。
ViT的基础是注意力机制,它有助于在整个输入序列上聚合信息。这种能力使网络能够合并远程的上下文提示,超越了CNN的有限感受野尺寸。然而,这种策略通常会限制ViT有效建模局部信息的能力。这种局限可能会妨碍它们检测局部纹理的能力,这对于各种诊断和预测任务至关重要。这种缺乏局部表示可以归因于ViT模型处理图像的特定方式。
ViT模型将图像分成一系列Patch,并使用自注意力机制来模拟它们之间的依赖关系。这种方法可能不如CNN模型中的卷积操作对感受野内提取局部特征有效。ViT和CNN模型之间的这种图像处理方法的差异可能解释了CNN模型在局部特征提取方面表现出色的原因。
近年来,已经开发出创新性方法来解决Transformer模型内部局部纹理不足的问题。其中一种方法是通过互补方法将CNN和ViT特征结合起来,以结合它们的优势并减轻局部表示的不足。TransUNet是这种方法的早期示例,它在CNN的瓶颈中集成了Transformer层,以模拟局部和全局依赖关系。HiFormer提出了一种解决方案,将Swin Transformer模块和基于CNN的编码器结合起来,生成两个多尺度特征表示,通过Double-Level Fusion模块集成。UNETR使用基于Transformer的编码器和CNN解码器进行3D医学图像分割。CoTr和TransBTS通过Transformer在低分辨率阶段增强分割性能,将CNN编码器和解码器连接在一起。
增强局部特征表示的另一种策略是重新设计纯Transformer模型内部的自注意力机制。在这方面,Swin-Unet在U形结构中集成了一个具有线性计算复杂性的Swin Transformer块作为多尺度 Backbone 。MISSFormer采用高效Transformer来解决视觉Transformer中的参数问题,通过在输入块上进行不可逆的降采样操作。D-Former引入了一个纯Transformer的管道,具有双重注意模块,以分段的方式捕获细粒度的局部注意和与多元单元的交互。然而,仍然存在一些特定的限制,包括计算效率低下,如TransUNet模型所示,对CNN Backbone 的严重依赖,如HiFormer所观察到的,以及对多尺度信息的忽略。
此外,目前的分割架构通常采用逐层处理3D输入 volumetric 的方法,无意中忽视了相邻切片之间的潜在相关性。这一疏忽限制了对 volumetric 信息的全面利用,因此损害了定位精度和上下文集成。此外,必须认识到,医学领域的病变通常在形状上发生变形。因此,用于医学图像分析的任何学习算法都必须具备捕捉和理解这些变形的能力。与此同时,该算法应保持计算效率,以便处理3D volumetric数据。
为了解决上述提到的挑战,作者提出了一个解决方案,即可变形大卷积核注意力模块(Deformable LKA module),它是作者网络设计的基本构建模块。这个模块明确设计成在有效处理上下文信息的同时保留局部描述符。作者的架构在这两个方面的平衡增强了实现精确语义分割的能力。
值得注意的是,参考该博客引入了一种基于数据的感受野的动态适应,不同于传统卷积操作中的固定滤波器Mask。这种自适应方法使作者能够克服与静态方法相关的固有限制。这种创新方法还扩展到了D-LKA Net架构的2D和3D版本的开发。
在3D模型的情况下,D-LKA机制被量身定制以适应3D环境,从而实现在不同 volumetric 切片之间无缝信息交互。最后,作者的贡献通过其计算效率得到进一步强调。作者通过仅依靠D-LKA概念的设计来实现这一点,在各种分割基准上取得了显著的性能,确立了作者的方法作为一种新的SOTA方法。
在本节中,作者首先概述方法论。首先,作者回顾了由Guo等人引入的大卷积核注意力(Large Kernel Attention,LKA)的概念。然后,作者介绍了作者对可变形LKA模块的创新探索。在此基础上,作者介绍了用于分割任务的2D和3D网络架构。
大卷积核提供了与自注意力机制类似的感受野。可以通过使用深度卷积、深度可扩展卷积和卷积来构建大卷积核,从而减少了参数和计算量。构建输入维度为和通道数的卷积核的深度卷积和深度可扩展卷积的卷积核大小的方程如下:
具有卷积核大小和膨胀率。参数数量和浮点运算(FLOPs)的计算如下:
FLOPs的数量与输入图像的大小成线性增长。参数的数量随通道数和卷积核大小的增加而呈二次增长。然而,由于它们通常都很小,因此它们不是限制因素。
为了最小化对于固定卷积核大小K的参数数量,可以将方程3对于膨胀率的导数设定为零:
例如,当卷积核大小为时,结果是。将这些公式扩展到3D情况是直接的。对于大小为和通道数C的输入,3D情况下参数数量和FLOPs 的方程如下:
具有卷积核大小和膨胀。
利用大卷积核进行医学图像分割的概念通过引入可变形卷积得以扩展。可变形卷积可以通过整数偏移自由调整采样网格以进行自由变形。额外的卷积层从特征图中学习出变形,从而创建一个偏移场。基于特征本身学习变形会导致自适应卷积核。这种灵活的卷积核形状可以提高病变或器官变形的表示,从而增强了目标边界的定义。
负责计算偏移的卷积层遵循其相应卷积层的卷积核大小和膨胀。双线性插值用于计算不在图像网格上的偏移的像素值。如图2所示,D-LKA模块可以表示为:
其中输入特征由表示,。表示为注意力图,其中每个值表示相应特征的相对重要性。运算符 表示逐元素乘法运算。值得注意的是,LKA不同于传统的注意力方法,它不需要额外的规范化函数,如或。这些规范化函数往往忽视高频信息,从而降低了基于自注意力的方法的性能。
在该方法的2D版本中,卷积层被可变形卷积所替代,因为可变形卷积能够改善对具有不规则形状和大小的目标的捕捉能力。这些目标在医学图像数据中常常出现,因此这种增强尤为重要。
然而,将可变形LKA的概念扩展到3D领域会带来一定的挑战。主要的约束来自于需要用于生成偏移的额外卷积层。与2D情况不同,由于输入和输出通道的性质,这一层无法以深度可分的方式执行。在3D环境中,输入通道对应于特征,而输出通道扩展到,其中是卷积核的大小。大卷积核的复杂性导致沿第3D的通道数扩展,导致参数和FLOPs大幅增加。因此,针对3D情况采用了另一种替代方法。在现有的LKA框架中,深度卷积之后引入了一个单独的可变形卷积层。这种战略性的设计调整旨在减轻扩展到3D领域所带来的挑战。
2D网络的架构如图1所示。第一变种使用MaxViT作为编码器组件,用于高效特征提取,而第二变种则结合可变形LKA层进行更精细、卓越的分割。
在更正式的描述中,编码器生成4个分层输出表示。首先,卷积干扰将输入图像的维度减小到。随后,通过4个MaxViT块的4个阶段进行特征提取,每个阶段后跟随降采样层。随着过程进展到解码器,实施了4个阶段的D-LKA层,每个阶段包含2个D-LKA块。然后,应用Patch扩展层以实现分辨率上采样,同时减小通道维度。最后,线性层负责生成最终的输出。
2D D-LKA块的结构包括LayerNorm、可变形LKA和多层感知器(MLP)。积分残差连接确保了有效的特征传播,即使在更深层也是如此。这个安排可以用数学方式表示为:
其中输入特征,层归一化LN,可变形LKA注意力,深度卷积,线性层和GeLU激活函数。
3D网络架构如图1所示,采用编码器-解码器设计进行分层结构化。首先,一个Patch嵌入层将输入图像的维度从()减小到()。在编码器中,采用了3个D-LKA阶段的序列,每个阶段包含3个D-LKA块。在每个阶段之后,通过降采样步骤将空间分辨率减半,同时将通道维度加倍。中央瓶颈包括另一组2个D-LKA块。解码器结构与编码器相对称。
为了将特征分辨率加倍,同时减少通道数,使用转置卷积。每个解码器阶段都使用3个D-LKA块来促进远距离特征依赖性。最终的分割输出由一个卷积层产生,后面跟随一个卷积层以匹配特定类别的通道要求。
为了建立输入图像和分割输出之间的直接连接,使用卷积形成了一个跳跃连接。额外的跳跃连接根据简单的加法对来自其他阶段的特征进行融合。最终的分割图是通过和卷积层的组合产生的。
3D D-LKA块包括层归一化,后跟D-LKA注意力,应用了残差连接的部分。随后的部分采用了一个卷积层,后面跟随一个卷积层,两者都伴随着残差连接。这个整个过程可以总结如下:
带有输入特征 、层归一化 、可变形 LKA 、卷积层 和输出特征 的公式。是指一个前馈网络,包括2个卷积层和激活函数。
表7显示了普通卷积和构建卷积的参数数量比较。尽管标准卷积的参数数量在通道数较多时急剧增加,但分解卷积的参数总体较低,并且增长速度不那么快。
与分解卷积相比,可变形分解卷积增加了大量参数,但仍然明显小于标准卷积。可变形卷积的主要参数是由偏移网络创建的。在这里,作者假设可变形深度卷积的Kernel大小为(5,5),可变形深度空洞卷积的Kernel大小为(7,7)。这导致了21×21大小的大Kernel的最佳参数数量。更高效地生成偏移量的方法将大大减少参数数量。
值得注意的是,引入可变形LKA确实会增加模型的参数数量和每秒的浮点运算次数(FLOPS)。然而,重要的是强调,这增加的计算负载不会影响作者模型的整体推理速度。
相反,对于Batch-size > 1,作者甚至观察到推理时间的减少,如图7所示。例如,基于作者的广泛实验,作者观察到对于Batch-size为16,具有可变形卷积和没有可变形卷积的推理时间分别为8.01毫秒和17.38毫秒。作者认为这是由于在2D中对可变形卷积的高效实现所致。为了测量时间,使用了大小为()的随机输入。在GPU热身周期50次迭代之后,网络被推断了1000次。测量是在NVIDIA RTX 3090 GPU上进行的。
为了充分利用性能与参数之间的权衡关系,作者在图8中可视化了在Synapse 2D数据集上报告的DSC和HD性能以及基于参数数量的内存消耗。D-LKA Net引入了相当多的参数,约为101M。这比性能第二好的方法ScaleFormer使用的111.6M参数要少。
与更轻量级的DAEFormer模型相比,作者实现了更好的性能,这证明了参数增加的合理性。大多数参数来自于MaxViT编码器;因此,将编码器替换为更高效的编码器可以减少模型参数。值得注意的是,在此可视化中,作者最初将HD和内存值都归一化到[0, 100]范围内。随后,作者将它们从100缩小,以增强更高值的表示。
9.系统功能展示
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10. YOLOv11核心改进源码讲解
10.1 test_selective_scan_speed.py
以下是经过精简和注释的核心代码部分,保留了最重要的功能和结构:
import torch
import torch.nn.functional as F
from einops import rearrange
def build_selective_scan_fn(selective_scan_cuda: object = None, mode="mamba_ssm"):
"""
构建选择性扫描函数的工厂函数,返回一个自定义的PyTorch函数。
:param selective_scan_cuda: CUDA实现的选择性扫描函数
:param mode: 选择性扫描的模式
:return: 自定义的选择性扫描函数
"""
class SelectiveScanFn(torch.autograd.Function):
@staticmethod
def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False):
"""
前向传播函数,执行选择性扫描的计算。
:param ctx: 上下文对象,用于保存信息以便反向传播
:param u: 输入张量
:param delta: 增量张量
:param A, B, C: 权重张量
:param D: 可选的额外输入
:param z: 可选的状态张量
:param delta_bias: 可选的增量偏置
:param delta_softplus: 是否使用softplus激活
:param return_last_state: 是否返回最后的状态
:return: 输出张量或(输出张量, 最后状态)
"""
# 确保输入张量是连续的
u = u.contiguous()
delta = delta.contiguous()
if D is not None:
D = D.contiguous()
B = B.contiguous()
C = C.contiguous()
if z is not None:
z = z.contiguous()
# 处理输入的维度和形状
if B.dim() == 3:
B = rearrange(B, "b dstate l -> b 1 dstate l")
ctx.squeeze_B = True
if C.dim() == 3:
C = rearrange(C, "b dstate l -> b 1 dstate l")
ctx.squeeze_C = True
# 调用CUDA实现的前向函数
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
# 保存用于反向传播的张量
ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x)
last_state = x[:, :, -1, 1::2] # 获取最后的状态
return out if not return_last_state else (out, last_state)
@staticmethod
def backward(ctx, dout):
"""
反向传播函数,计算梯度。
:param ctx: 上下文对象,包含前向传播时保存的信息
:param dout: 输出的梯度
:return: 输入张量的梯度
"""
u, delta, A, B, C, D, z, delta_bias, x = ctx.saved_tensors
dout = dout.contiguous()
# 调用CUDA实现的反向函数
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(u, delta, A, B, C, D, z, delta_bias, dout, x)
return (du, ddelta, dA, dB, dC, dD, None, ddelta_bias, None)
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False):
"""
包装选择性扫描函数的调用。
"""
return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
return selective_scan_fn
# 选择性扫描的参考实现
def selective_scan_ref(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False):
"""
选择性扫描的参考实现,计算输出和最后状态。
"""
# 输入张量的处理
u = u.float()
delta = delta.float()
if delta_bias is not None:
delta = delta + delta_bias[..., None].float()
if delta_softplus:
delta = F.softplus(delta)
# 初始化状态
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
x = A.new_zeros((batch, dim, dstate))
ys = []
# 逐步计算输出
for i in range(u.shape[2]):
x = delta[:, :, i] * x + B[:, :, i] # 更新状态
y = torch.einsum('bdn,dn->bd', x, C) # 计算输出
ys.append(y)
y = torch.stack(ys, dim=2) # 堆叠输出
return y if not return_last_state else (y, x) # 返回输出和最后状态
# 测试函数
def test_speed():
"""
测试选择性扫描函数的速度。
"""
# 省略具体实现细节
pass
# 调用测试函数
test_speed()
代码注释说明:
- build_selective_scan_fn: 这是一个工厂函数,用于创建选择性扫描的自定义函数,内部定义了前向和反向传播的逻辑。
- SelectiveScanFn: 这是一个继承自
torch.autograd.Function
的类,包含了前向和反向传播的实现。 - forward: 处理输入,调用CUDA实现的前向函数,并保存必要的张量以供反向传播使用。
- backward: 使用保存的张量计算梯度,调用CUDA实现的反向函数。
- selective_scan_ref: 这是一个参考实现,计算选择性扫描的输出和最后状态。
- test_speed: 测试选择性扫描函数的性能,具体实现细节省略。
通过这种方式,代码的核心功能得以保留,同时提供了清晰的中文注释,便于理解和维护。
这个文件 test_selective_scan_speed.py
是一个用于测试选择性扫描(Selective Scan)算法性能的 Python 脚本,主要依赖于 PyTorch 库。文件中包含了一些自定义的函数和类,用于实现选择性扫描的前向和反向传播,并进行速度测试。
首先,文件引入了必要的库,包括 torch
、torch.nn.functional
、pytest
等。然后定义了一个 build_selective_scan_fn
函数,这个函数用于构建一个选择性扫描的自定义函数类 SelectiveScanFn
,该类继承自 torch.autograd.Function
。在这个类中,定义了 forward
和 backward
两个静态方法,分别用于前向传播和反向传播。
在 forward
方法中,首先对输入的张量进行连续性检查,确保它们的内存布局是连续的。接着,根据不同的模式(如 “mamba_ssm”、“sscore” 等)调用相应的 CUDA 函数进行前向计算。最后,保存必要的中间变量以供反向传播使用,并返回计算结果。
backward
方法则根据保存的中间变量计算梯度,支持多种模式下的反向传播。通过对输入的张量进行操作,计算出各个输入的梯度,并返回这些梯度。
接下来,定义了 selective_scan_ref
函数,这是一个参考实现,用于执行选择性扫描的操作。该函数接收多个输入参数,并根据输入的形状和维度进行计算,返回最终的输出结果。
文件中还定义了两个版本的选择性扫描函数 selective_scan_easy
和 selective_scan_easy_v2
,这两个函数的实现逻辑相似,都是对输入数据进行分块处理,并通过调用内部的 selective_scan_chunk
函数来完成选择性扫描的计算。
最后,文件中定义了 test_speed
函数,该函数用于测试不同选择性扫描实现的速度。它通过多次调用不同的选择性扫描函数,记录每次调用的时间,并输出结果。测试中使用了不同的输入参数和配置,以便评估不同实现的性能。
总的来说,这个文件的主要目的是实现选择性扫描算法,并通过速度测试来比较不同实现的性能。通过自定义的 PyTorch 函数,结合 CUDA 加速,能够有效地处理大规模数据的计算任务。
10.2 attention.py
以下是经过简化和注释的核心代码部分,主要包括 EMA
、SimAM
、SpatialGroupEnhance
和 BiLevelRoutingAttention
类。注释详细解释了每个类的功能和关键步骤。
import torch
from torch import nn
class EMA(nn.Module):
"""
Exponential Moving Average (EMA) 模块,用于增强特征表示。
"""
def __init__(self, channels, factor=8):
super(EMA, self).__init__()
self.groups = factor # 将通道分为多个组
assert channels // self.groups > 0 # 确保每组至少有一个通道
self.softmax = nn.Softmax(-1) # Softmax 层
self.agp = nn.AdaptiveAvgPool2d((1, 1)) # 自适应平均池化
self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) # 自适应池化,按高度
self.pool_w = nn.AdaptiveAvgPool2d((1, None)) # 自适应池化,按宽度
self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups) # 组归一化
self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1) # 1x1 卷积
self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, padding=1) # 3x3 卷积
def forward(self, x):
b, c, h, w = x.size() # 获取输入的批量大小、通道数、高度和宽度
group_x = x.reshape(b * self.groups, -1, h, w) # 将输入重塑为多个组
x_h = self.pool_h(group_x) # 对每组进行高度池化
x_w = self.pool_w(group_x).permute(0, 1, 3, 2) # 对每组进行宽度池化并转置
hw = self.conv1x1(torch.cat([x_h, x_w], dim=2)) # 将高度和宽度特征拼接后通过 1x1 卷积
x_h, x_w = torch.split(hw, [h, w], dim=2) # 将结果分为高度和宽度部分
x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid()) # 通过组归一化处理
x2 = self.conv3x3(group_x) # 通过 3x3 卷积处理
# 计算权重
x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
x12 = x2.reshape(b * self.groups, c // self.groups, -1)
x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
x22 = x1.reshape(b * self.groups, c // self.groups, -1)
weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w) # 计算最终权重
return (group_x * weights.sigmoid()).reshape(b, c, h, w) # 返回加权后的特征
class SimAM(nn.Module):
"""
SimAM 模块,用于自适应特征增强。
"""
def __init__(self, e_lambda=1e-4):
super(SimAM, self).__init__()
self.activaton = nn.Sigmoid() # Sigmoid 激活函数
self.e_lambda = e_lambda # 正则化参数
def forward(self, x):
b, c, h, w = x.size() # 获取输入的批量大小、通道数、高度和宽度
n = w * h - 1 # 计算区域大小
x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2) # 计算均值平方差
y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5 # 计算增强因子
return x * self.activaton(y) # 返回增强后的特征
class SpatialGroupEnhance(nn.Module):
"""
空间组增强模块,用于增强特征的空间表示。
"""
def __init__(self, groups=8):
super().__init__()
self.groups = groups # 组数
self.avg_pool = nn.AdaptiveAvgPool2d(1) # 自适应平均池化
self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1)) # 权重参数
self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1)) # 偏置参数
self.sig = nn.Sigmoid() # Sigmoid 激活函数
self.init_weights() # 初始化权重
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out') # Kaiming 正态初始化
if m.bias is not None:
nn.init.constant_(m.bias, 0) # 偏置初始化为 0
def forward(self, x):
b, c, h, w = x.shape # 获取输入的批量大小、通道数、高度和宽度
x = x.view(b * self.groups, -1, h, w) # 将输入重塑为多个组
xn = x * self.avg_pool(x) # 计算每组的平均特征
xn = xn.sum(dim=1, keepdim=True) # 对每组特征求和
t = xn.view(b * self.groups, -1) # 重塑特征
t = t - t.mean(dim=1, keepdim=True) # 减去均值
std = t.std(dim=1, keepdim=True) + 1e-5 # 计算标准差
t = t / std # 归一化
t = t.view(b, self.groups, h, w) # 重塑为原始形状
t = t * self.weight + self.bias # 计算最终权重
x = x * self.sig(t) # 加权特征
return x.view(b, c, h, w) # 返回增强后的特征
class BiLevelRoutingAttention(nn.Module):
"""
Bi-Level Routing Attention 模块,用于增强特征的注意力机制。
"""
def __init__(self, dim, num_heads=8, n_win=7, qk_dim=None, qk_scale=None, topk=4):
super().__init__()
self.dim = dim # 输入特征维度
self.n_win = n_win # 窗口数量
self.num_heads = num_heads # 注意力头数
self.qk_dim = qk_dim or dim # 查询和键的维度
assert self.qk_dim % num_heads == 0 and self.dim % num_heads == 0, 'qk_dim and dim must be divisible by num_heads!' # 确保维度可被头数整除
self.scale = qk_scale or self.qk_dim ** -0.5 # 缩放因子
# 初始化其他组件
self.router = TopkRouting(qk_dim=self.qk_dim, topk=topk) # 路由模块
self.kv_gather = KVGather(mul_weight='soft') # K/V 收集模块
self.qkv = QKVLinear(self.dim, self.qk_dim) # QKV 映射
self.wo = nn.Linear(dim, dim) # 输出线性层
def forward(self, x):
"""
前向传播
"""
# 处理输入并计算注意力
x = rearrange(x, "n c h w -> n h w c") # 重塑输入
# 其他处理步骤...
return x # 返回处理后的特征
以上代码中,EMA
、SimAM
、SpatialGroupEnhance
和 BiLevelRoutingAttention
类的功能和结构得到了保留,并且添加了详细的中文注释以帮助理解。
这个程序文件 attention.py
实现了一系列用于深度学习模型的注意力机制模块,主要是针对图像处理任务的。以下是对文件中主要部分的逐步解释。
首先,文件导入了必要的库,包括 PyTorch 和一些深度学习相关的模块。接着,定义了一些注意力机制的类,这些类都是 nn.Module
的子类,能够在神经网络中使用。
文件中的主要类包括:
-
EMA (Exponential Moving Average):这个类实现了一种基于通道的注意力机制。它通过对输入特征图进行分组、池化和卷积操作,计算出每个通道的加权值,从而增强特征表示。
-
SimAM (Similarity Attention Module):这个模块通过计算输入特征的均值和方差,生成一个注意力权重,并通过 Sigmoid 激活函数来调节输入特征的强度。
-
SpatialGroupEnhance:该模块通过自适应平均池化和卷积操作来增强特征图的空间信息,利用组归一化来提高特征的表达能力。
-
TopkRouting:实现了一种可微分的 Top-k 路由机制,通过查询和键的点积计算注意力权重,并选择前 k 个最重要的特征。
-
KVGather:用于根据路由索引和权重从键值对中收集信息。
-
QKVLinear:实现了一个线性层,用于将输入特征映射到查询、键和值的空间。
-
BiLevelRoutingAttention:实现了一种双层路由注意力机制,结合了局部和全局的注意力机制,通过窗口划分和路由选择来增强特征表示。
-
CoordAtt、TripletAttention、BAMBlock 等类实现了不同的注意力机制,旨在捕捉特征图中的重要信息。
-
LocalWindowAttention:实现了一种局部窗口注意力机制,能够在特定的窗口内计算注意力,从而减少计算复杂度。
-
EffectiveSEModule、LSKA、MPCA 等模块实现了各种通道注意力机制,旨在提高模型的性能。
每个类的 forward
方法定义了前向传播的计算过程,通常包括对输入特征图的处理、计算注意力权重、以及对输入特征的加权和输出。
最后,文件中还定义了一些辅助函数,如 img2windows
和 windows2img
,用于将图像划分为窗口,以及将窗口合并回图像的过程。
整体来看,这个文件实现了多种注意力机制,旨在通过不同的方式增强特征表示,提升深度学习模型在图像处理任务中的性能。
10.3 metaformer.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
class MF_Attention(nn.Module):
"""
实现自注意力机制的类,来源于Transformer模型。
"""
def __init__(self, dim, head_dim=32, num_heads=None, qkv_bias=False,
attn_drop=0., proj_drop=0., proj_bias=False):
super().__init__()
# 头的维度
self.head_dim = head_dim
# 缩放因子
self.scale = head_dim ** -0.5
# 计算头的数量
self.num_heads = num_heads if num_heads else dim // head_dim
if self.num_heads == 0:
self.num_heads = 1
# 计算注意力的维度
self.attention_dim = self.num_heads * self.head_dim
# 定义Q、K、V的线性变换
self.qkv = nn.Linear(dim, self.attention_dim * 3, bias=qkv_bias)
# 定义注意力的dropout
self.attn_drop = nn.Dropout(attn_drop)
# 定义输出的线性变换
self.proj = nn.Linear(self.attention_dim, dim, bias=proj_bias)
# 定义输出的dropout
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
# 获取输入的批次大小、高度、宽度和通道数
B, H, W, C = x.shape
N = H * W # 计算总的token数量
# 计算Q、K、V
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # 分离Q、K、V
# 计算注意力分数
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1) # 归一化为概率分布
attn = self.attn_drop(attn) # 应用dropout
# 计算输出
x = (attn @ v).transpose(1, 2).reshape(B, H, W, self.attention_dim)
x = self.proj(x) # 线性变换
x = self.proj_drop(x) # 应用dropout
return x # 返回输出
class MetaFormerBlock(nn.Module):
"""
实现一个MetaFormer块的类。
"""
def __init__(self, dim,
token_mixer=nn.Identity, mlp=Mlp,
norm_layer=partial(LayerNormWithoutBias, eps=1e-6),
drop=0., drop_path=0.,
layer_scale_init_value=None, res_scale_init_value=None
):
super().__init__()
# 归一化层
self.norm1 = norm_layer(dim)
# 令牌混合器
self.token_mixer = token_mixer(dim=dim, drop=drop)
# DropPath层
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# 层缩放
self.layer_scale1 = Scale(dim=dim, init_value=layer_scale_init_value) \
if layer_scale_init_value else nn.Identity()
self.res_scale1 = Scale(dim=dim, init_value=res_scale_init_value) \
if res_scale_init_value else nn.Identity()
# 第二个归一化层
self.norm2 = norm_layer(dim)
# MLP层
self.mlp = mlp(dim=dim, drop=drop)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.layer_scale2 = Scale(dim=dim, init_value=layer_scale_init_value) \
if layer_scale_init_value else nn.Identity()
self.res_scale2 = Scale(dim=dim, init_value=res_scale_init_value) \
if res_scale_init_value else nn.Identity()
def forward(self, x):
# 进行维度变换
x = x.permute(0, 2, 3, 1)
# 第一部分的前向传播
x = self.res_scale1(x) + \
self.layer_scale1(
self.drop_path1(
self.token_mixer(self.norm1(x))
)
)
# 第二部分的前向传播
x = self.res_scale2(x) + \
self.layer_scale2(
self.drop_path2(
self.mlp(self.norm2(x))
)
)
return x.permute(0, 3, 1, 2) # 返回到原始维度
代码核心部分说明:
-
MF_Attention: 这是一个实现自注意力机制的模块,主要用于计算输入的注意力权重,并生成加权后的输出。它使用了线性变换来生成查询(Q)、键(K)和值(V),并通过softmax计算注意力分数。
-
MetaFormerBlock: 这是一个MetaFormer块的实现,包含了归一化、令牌混合、MLP和残差连接等功能。它通过多个层的组合来处理输入数据,并实现深度学习模型中的信息传递和特征提取。
这些部分是实现MetaFormer模型的基础,提供了自注意力机制和块结构的核心功能。
这个程序文件metaformer.py
实现了一些用于构建MetaFormer模型的基础组件,主要包括各种层和模块。以下是对代码的详细说明。
首先,文件引入了一些必要的库,包括torch
和torch.nn
,以及一些功能性模块,如DropPath
和to_2tuple
。这些库和模块提供了构建神经网络所需的基本功能。
接下来,定义了几个自定义的神经网络层和模块。Scale
类用于按元素乘以一个可训练的缩放向量,适用于需要动态调整权重的场景。SquaredReLU
和StarReLU
类实现了不同形式的激活函数,前者是平方ReLU,后者则是带有缩放和偏置的ReLU变体。
MF_Attention
类实现了自注意力机制,采用了Transformer中的标准自注意力结构。它通过线性变换生成查询、键和值,并计算注意力权重,最后将结果投影回原始维度。
RandomMixing
类用于对输入进行随机混合,通过一个随机矩阵对输入进行线性变换。LayerNormGeneral
类实现了通用的层归一化,可以根据不同的输入形状和需求进行配置。LayerNormWithoutBias
是一个优化版本的层归一化,不使用偏置项。
SepConv
类实现了分离卷积,采用了MobileNetV2中的反向分离卷积结构。它首先通过一个线性层进行通道扩展,然后使用深度卷积进行特征提取,最后再通过线性层将特征映射回原始维度。
Pooling
类实现了一种池化操作,旨在对输入进行平均池化,并返回池化后的结果与原始输入的差值。Mlp
类实现了多层感知机,通常用于MetaFormer模型中的前馈网络。
ConvolutionalGLU
类实现了一种卷积门控线性单元,结合了卷积操作和门控机制,以增强模型的表达能力。
MetaFormerBlock
和MetaFormerCGLUBlock
类分别实现了MetaFormer的基本模块,前者使用标准的多层感知机,后者则使用卷积门控线性单元。两个模块都包含了归一化、残差连接和DropPath等机制,以增强模型的稳定性和性能。
总体而言,这个文件提供了一系列构建MetaFormer模型所需的基础组件,支持多种激活函数、注意力机制、卷积操作和归一化方式,适用于不同的任务和数据集。通过组合这些模块,可以构建出强大的深度学习模型。
10.4 block.py
以下是保留的核心代码部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""自动填充以实现'same'形状输出。"""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # 实际的卷积核大小
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # 自动填充
return p
class Conv(nn.Module):
"""卷积层,包含卷积、批归一化和激活函数。"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1, act=True):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, autopad(kernel_size, padding), groups=groups, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.act = nn.SiLU() if act else nn.Identity() # 默认激活函数为SiLU
def forward(self, x):
"""前向传播。"""
return self.act(self.bn(self.conv(x)))
class Bottleneck(nn.Module):
"""标准瓶颈结构,包含两个卷积层。"""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
super().__init__()
c_ = int(c2 * e) # 隐藏通道数
self.cv1 = Conv(c1, c_, k[0], 1) # 第一个卷积层
self.cv2 = Conv(c_, c2, k[1], 1, g=g) # 第二个卷积层
self.add = shortcut and c1 == c2 # 是否使用shortcut连接
def forward(self, x):
"""前向传播。"""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3k(nn.Module):
"""C3k模块,包含多个瓶颈结构。"""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=3):
super().__init__()
self.m = nn.Sequential(*(Bottleneck(c1, c2, shortcut, g, k=(k, k), e=e) for _ in range(n))) # n个瓶颈结构
def forward(self, x):
"""前向传播。"""
return self.m(x)
class DynamicConv(nn.Module):
"""动态卷积层,使用条件卷积。"""
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True, num_experts=4):
super().__init__()
self.conv = nn.Sequential(
DynamicConv_Single(c1, c2, kernel_size=k, stride=s, padding=autopad(k, p, d), dilation=d, groups=g, num_experts=num_experts),
nn.BatchNorm2d(c2),
nn.SiLU() if act else nn.Identity()
)
def forward(self, x):
"""前向传播。"""
return self.conv(x)
class FocusFeature(nn.Module):
"""特征聚焦模块。"""
def __init__(self, inc, kernel_sizes=(5, 7, 9, 11), e=0.5) -> None:
super().__init__()
hidc = int(inc[1] * e) # 隐藏通道数
self.conv1 = Conv(inc[0], hidc, 1) # 第一个卷积层
self.conv2 = Conv(inc[1], hidc, 1) # 第二个卷积层
self.conv3 = ADown(inc[2], hidc) # 下采样卷积层
self.dw_conv = nn.ModuleList(nn.Conv2d(hidc * 3, hidc * 3, kernel_size=k, padding=autopad(k), groups=hidc * 3) for k in kernel_sizes) # 多尺度卷积
self.pw_conv = Conv(hidc * 3, hidc * 3) # 点卷积
def forward(self, x):
"""前向传播。"""
x1, x2, x3 = x # 分别获取三个输入特征
x1 = self.conv1(x1) # 对第一个输入进行卷积
x2 = self.conv2(x2) # 对第二个输入进行卷积
x3 = self.conv3(x3) # 对第三个输入进行下采样卷积
x = torch.cat([x1, x2, x3], dim=1) # 拼接特征
feature = torch.sum(torch.stack([x] + [layer(x) for layer in self.dw_conv], dim=0), dim=0) # 多尺度卷积
feature = self.pw_conv(feature) # 点卷积
x = x + feature # 残差连接
return x # 返回输出特征
代码注释说明
autopad
函数:用于自动计算卷积的填充,以确保输出特征图的大小与输入特征图相同。Conv类
:定义了一个卷积层,包含卷积、批归一化和激活函数。Bottleneck类
:实现了标准的瓶颈结构,包含两个卷积层和可选的shortcut连接。C3k类
:实现了C3k模块,包含多个瓶颈结构。DynamicConv类
:实现了动态卷积层,使用条件卷积来处理输入特征。FocusFeature类
:实现了特征聚焦模块,通过卷积和下采样来处理输入特征。
以上代码和注释提供了对深度学习模型中一些核心组件的清晰理解。
这个程序文件 block.py
定义了一系列用于构建深度学习模型的模块,主要集中在卷积层、注意力机制、以及各种网络结构的实现上。以下是对文件中主要部分的说明:
首先,文件引入了多个必要的库,包括 PyTorch、NumPy 以及一些自定义模块。然后,定义了一些通用的辅助函数,例如 autopad
用于自动计算卷积的填充。
接下来,文件中定义了多个类,代表不同的网络模块和层。比如:
- Swish、h_swish、h_sigmoid:这些是激活函数的实现,提供了不同的非线性变换。
- DyReLU:这是一个动态的 ReLU 实现,可以根据输入的特征动态调整其输出。
- DyDCNv2、DyHeadBlock、DyHeadBlockWithDCNV3:这些类实现了动态卷积和头部块,主要用于处理特征图并进行动态调整。
- Fusion、Partial_conv3、Faster_Block:这些模块用于特征融合和卷积操作,能够在不同层次的特征之间进行信息传递。
- C3k、C3k2:这些是网络的基本构建块,通常用于构建更复杂的网络结构。
文件中还实现了一些更复杂的模块,例如:
- ContextGuidedBlock、ContextGuideFusionModule:这些模块用于引导上下文信息的融合,增强特征的表达能力。
- CSPStage、CSP_MSCB:这些是 CSP(Cross Stage Partial)结构的实现,旨在通过分阶段的特征提取来提高网络的性能。
- DynamicConv、GhostConv:这些是动态卷积和轻量级卷积的实现,旨在减少计算量并提高效率。
- MogaBlock、C3k2_MogaBlock:这些模块结合了多种注意力机制和卷积操作,增强了网络的特征提取能力。
此外,文件中还定义了一些特定的注意力机制,如 PSA、SMA,以及其他模块,如 WaveletPool、WaveletUnPool,用于处理特征图的上采样和下采样。
最后,文件中实现了一些用于特定任务的网络结构,例如 YOLO 系列模型,提供了用于目标检测的基础模块。
总的来说,block.py
文件提供了一个丰富的模块库,能够支持多种深度学习模型的构建,特别是在计算机视觉领域。每个模块都可以单独使用,也可以组合成更复杂的网络结构,以满足不同的应用需求。
注意:由于此博客编辑较早,上面“10.YOLOv11核心改进源码讲解”中部分代码可能会优化升级,仅供参考学习,以“11.完整训练+Web前端界面+200+种全套创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。