本文介绍几种巧用检测器与跟踪器的方法
快速网络和高精度网络结合在超大图中不缺失精度的同时提速
检测器用了两个检测网络,一个是经过模型压缩后的快速检测网络,一个是高精度的稍慢一点的检测网络。先用快速检测网络对大图(3840*2160)全图检测,将结果记录。然后依据快速检测网络的结果在局部区域用高精度网络检测。使用此方法可以在精度不缺失很多的情况下大大提升检测速度,使得在超大图中也能快速定位目标。
把检测器当做跟踪器用
当检测到目标后就可以开一个局部窗口,用一个高精度的检测网络在局部进行检测,并且这个窗口能不停跟随目标。当有几帧没有定位到目标时,普通跟踪器很可能就失效了,但用局部检测的方法,只要目标还在局部窗内,目标就还是能被找到。用这种把检测当作跟踪用的方法对相机的快速移动的适应能力更强。
用跟踪器辅助检测器,弥补检测器的不足
检测和跟踪并不是互相独立的,两者在许多应用场合中能优势互补。检测器虽然不需要目标在视频中是连续运动的,但也有自身的缺陷。基于深度学习的检测器往往是依据大量数据而获得模型。但当训练样本中没有实际要检测的样本时,比如光照剧烈变化、存在各种模糊时,检测器很可能会失效。这个时候就可以利用目标在视频中运动轨迹的连续性增加判别能力,于是跟踪器就派上用场了。当检测丢失目标后,可以把丢失前一帧的目标crop出来送给跟踪器进行跟踪。
整个算法流程如下