pandas文档学习之一:数据结构介绍

pandas官方文档传送门 http://pandas.pydata.org/pandas-docs/stable/

Intro to Data Structures-数据结构介绍

两个重要的数据结构—Series & Dataframe

Series

是一维数组对象,包含一维数组和索引

#创建一个Series
>>> import pandas as pd
>>> s = pd.Series(data, index=index)

data可以是 一个python字典、一个ndarray、一个标量值(比如5)

# 从数组 创建一个Series , 可以指定索引值,若不指定 则为默认值
In [3]: obj = pd.Series([4,7,-5,3])
In [4]: obj
Out[4]: 
0    4
1    7
2   -5
3    3
dtype: int64
# 从字典创建一个Series , 字典的键将传递给索引

In [17]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
In [19]: obj3 = pd.Series(sdata)

In [20]: obj3
Out[20]: 
Ohio      35000
Oregon    16000
Texas     71000
Utah       5000
dtype: int64

In [21]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [22]: obj4 = pd.Series(sdata, index=states)

In [23]: obj4
Out[23]: 
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
dtype: float64
# 从标量值创建Series,必须给出索引,将会根据索引数目创建相应的值
In [24]: pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
Out[24]: 
a    5.0
b    5.0
c    5.0
d    5.0
e    5.0
dtype: float64

Series 具有类似ndarray的属性、字典的属性及矢量运算

In [5]: obj.values
Out[5]: array([ 4,  7, -5,  3])

In [6]: obj.index
Out[6]: RangeIndex(start=0, stop=4, step=1)

# 可指定索引名称
In [8]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
In [9]: obj2
Out[9]: 
d    4
b    7
a   -5
c    3
dtype: int64

# 根据索引查询和修改值
In [10]: obj2['a']
Out[10]: -5

In [11]: obj2['c']=9
In [12]: obj2
Out[12]: 
d    4
b    7
a   -5
c    9
dtype: int64


In [14]: 5 in obj
Out[14]: False

# 条件过滤
In [15]: obj2[obj2>5]
Out[15]: 
b    7
c    9
dtype: int64

# 四则运算
In [16]: obj2 * 2
Out[16]: 
d     8
b    14
a   -10
c    18
dtype: int64

In [17]: obj[1:]+obj[:-1]
Out[17]: 
0     NaN
1    14.0
2   -10.0
3     NaN
dtype: float64
# 值不存在显示NaN

Seires具有名称属性

In [27]: s = pd.Series(np.random.randn(5), name='something')

In [28]: s
Out[28]: 
0   -0.4949
1    1.0718
2    0.7216
3   -0.7068
4   -1.0396
Name: something, dtype: float64

In [29]: s.name
Out[29]: 'something'

# 通过pandas.Series.rename()方法修改名称
In [30]: s2 = s.rename("different")

In [31]: s2.name
Out[31]: 'different'

DataFrame

是具有不同类型列的二维标签结构,类似SQL表格

创建一个dataframe对象

数据可以来自:
- 一维数组、列表、字典或序列的字典
- 二维numpy数组
- 结构化的ndarray
- A Series
- 其他的DataFrame

# 从Series 或字典 的字典
In [32]: d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
   ....:      'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
   ....: 

In [33]: df = pd.DataFrame(d)

In [34]: df
Out[34]: 
   one  two
a  1.0  1.0
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0

In [35]: pd.DataFrame(d, index=['d', 'b', 'a'])
Out[35]: 
   one  two
d  NaN  4.0
b  2.0  2.0
a  1.0  1.0

In [36]: pd.DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
Out[36]: 
   two three
d  4.0   NaN
b  2.0   NaN
a  1.0   NaN

# 注意: key是列名,一个Series为一列

# 从数组的字典
In [39]: d = {'one' : [1., 2., 3., 4.],
   ....:      'two' : [4., 3., 2., 1.]}
   ....: 

In [40]: pd.DataFrame(d)
Out[40]: 
   one  two
0  1.0  4.0
1  2.0  3.0
2  3.0  2.0
3  4.0  1.0

In [41]: pd.DataFrame(d, index=['a', 'b', 'c', 'd'])
Out[41]: 
   one  two
a  1.0  4.0
b  2.0  3.0
c  3.0  2.0
d  4.0  1.0


# 从结构化数组

In [42]: data = np.zeros((2,), dtype=[('A', 'i4'),('B', 'f4'),('C', 'a10')])

In [43]: data[:] = [(1,2.,'Hello'), (2,3.,"World")]

In [44]: pd.DataFrame(data)
Out[44]: 
   A    B         C
0  1  2.0  b'Hello'
1  2  3.0  b'World'

In [45]: pd.DataFrame(data, index=['first', 'second'])
Out[45]: 
        A    B         C
first   1  2.0  b'Hello'
second  2  3.0  b'World'

In [46]: pd.DataFrame(data, columns=['C', 'A', 'B'])
Out[46]: 
          C  A    B
0  b'Hello'  1  2.0
1  b'World'  2  3.0


# 从字典的列表

In [47]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]

In [48]: pd.DataFrame(data2)
Out[48]: 
   a   b     c
0  1   2   NaN
1  5  10  20.0

In [49]: pd.DataFrame(data2, index=['first', 'second'])
Out[49]: 
        a   b     c
first   1   2   NaN
second  5  10  20.0

In [50]: pd.DataFrame(data2, columns=['a', 'b'])
Out[50]: 
   a   b
0  1   2
1  5  10

#从元组的字典
In [51]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
   ....:               ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
   ....:               ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
   ....:               ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
   ....:               ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
   ....: 
Out[51]: 
       a              b      
       a    b    c    a     b
A B  4.0  1.0  5.0  8.0  10.0
  C  3.0  2.0  6.0  7.0   NaN
  D  NaN  NaN  NaN  NaN   9.0


#  from records 、from items 等

In [52]: data
Out[52]: 
array([(1,  2., b'Hello'), (2,  3., b'World')],
      dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])

In [53]: pd.DataFrame.from_records(data, index='C')
Out[53]: 
          A    B
C               
b'Hello'  1  2.0
b'World'  2  3.0

In [54]: pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])])
Out[54]: 
   A  B
0  1  4
1  2  5
2  3  6


In [55]: pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
   ....:                         orient='index', columns=['one', 'two', 'three'])
   ....: 
Out[55]: 
   one  two  three
A    1    2      3
B    4    5      6
列的增加、删除、选择、插入
In [56]: df['one']
Out[56]: 
a    1.0
b    2.0
c    3.0
d    NaN
Name: one, dtype: float64

In [57]: df['three'] = df['one'] * df['two']

In [58]: df['flag'] = df['one'] > 2

In [59]: df
Out[59]: 
   one  two  three   flag
a  1.0  1.0    1.0  False
b  2.0  2.0    4.0  False
c  3.0  3.0    9.0   True
d  NaN  4.0    NaN  False

#  删除
In [60]: del df['two']

In [61]: three = df.pop('three')

In [62]: df
Out[62]: 
   one   flag
a  1.0  False
b  2.0  False
c  3.0   True
d  NaN  False

In [63]: df['foo'] = 'bar'

In [64]: df
Out[64]: 
   one   flag  foo
a  1.0  False  bar
b  2.0  False  bar
c  3.0   True  bar
d  NaN  False  bar


In [65]: df['one_trunc'] = df['one'][:2]

In [66]: df
Out[66]: 
   one   flag  foo  one_trunc
a  1.0  False  bar        1.0
b  2.0  False  bar        2.0
c  3.0   True  bar        NaN
d  NaN  False  bar        NaN


# 在指定位置插入列 insert(位置,列名,数据)  
In [67]: df.insert(1, 'bar', df['one'])

In [68]: df
Out[68]: 
   one  bar   flag  foo  one_trunc
a  1.0  1.0  False  bar        1.0
b  2.0  2.0  False  bar        2.0
c  3.0  3.0   True  bar        NaN
d  NaN  NaN  False  bar        NaN
DataFrame按索引选取
操作语法结果
选择列df[col]Series
按标签选择行df.loc[label]Series
按位置选择行df.iloc[loc]Series
按行切片df[5:10]DataFrame
按布尔向量选择行df[bool_vec]DataFrame
In [75]: df.loc['b']
Out[75]: 
one              2
bar              2
flag         False
foo            bar
one_trunc        2
Name: b, dtype: object

In [76]: df.iloc[2]
Out[76]: 
one             3
bar             3
flag         True
foo           bar
one_trunc     NaN
Name: c, dtype: object
DataFrame计算
# pandas生成时间索引
In [81]: index = pd.date_range('1/1/2000', periods=8)

In [82]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=list('ABC'))

In [83]: df
Out[83]: 
                 A       B       C
2000-01-01 -1.2268  0.7698 -1.2812
2000-01-02 -0.7277 -0.1213 -0.0979
2000-01-03  0.6958  0.3417  0.9597
2000-01-04 -1.1103 -0.6200  0.1497
2000-01-05 -0.7323  0.6877  0.1764
2000-01-06  0.4033 -0.1550  0.3016
2000-01-07 -2.1799 -1.3698 -0.9542
2000-01-08  1.4627 -1.7432 -0.8266

In [86]: df * 5 + 2
Out[86]: 
                 A       B       C
2000-01-01 -4.1341  5.8490 -4.4062
2000-01-02 -1.6385  1.3935  1.5106
2000-01-03  5.4789  3.7087  6.7986
2000-01-04 -3.5517 -1.0999  2.7487
2000-01-05 -1.6617  5.4387  2.8822
2000-01-06  4.0165  1.2252  3.5081
2000-01-07 -8.8993 -4.8492 -2.7710
2000-01-08  9.3135 -6.7158 -2.1330

In [87]: 1 / df
Out[87]: 
                 A       B        C
2000-01-01 -0.8151  1.2990  -0.7805
2000-01-02 -1.3742 -8.2436 -10.2163
2000-01-03  1.4372  2.9262   1.0420
2000-01-04 -0.9006 -1.6130   6.6779
2000-01-05 -1.3655  1.4540   5.6675
2000-01-06  2.4795 -6.4537   3.3154
2000-01-07 -0.4587 -0.7300  -1.0480
2000-01-08  0.6837 -0.5737  -1.2098

In [88]: df ** 4
Out[88]: 
                  A       B           C
2000-01-01   2.2653  0.3512  2.6948e+00
2000-01-02   0.2804  0.0002  9.1796e-05
2000-01-03   0.2344  0.0136  8.4838e-01
2000-01-04   1.5199  0.1477  5.0286e-04
2000-01-05   0.2876  0.2237  9.6924e-04
2000-01-06   0.0265  0.0006  8.2769e-03
2000-01-07  22.5795  3.5212  8.2903e-01
2000-01-08   4.5774  9.2332  4.6683e-01


# DataFrame的转置
# only show the first 5 rows
In [95]: df[:5].T
Out[95]: 
   2000-01-01  2000-01-02  2000-01-03  2000-01-04  2000-01-05
A     -1.2268     -0.7277      0.6958     -1.1103     -0.7323
B      0.7698     -0.1213      0.3417     -0.6200      0.6877
C     -1.2812     -0.0979      0.9597      0.1497      0.1764
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值