使用keras 的predict_generator预测分类效果,形成混淆矩阵

话不多说,直接上代码:

import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import load_model

if __name__=='__main':
    #test image directory
    dst_path = 'E:/datasets/Rcam-plusMelangerTaile/8KLSBackWindow/test'
    #model path
    model_file = "D:/CF_new/piglin_alchemy/ckpt/tl_weights.40-0.7715.h5"
    batch_size = 8

    # load model
    model = load_model(model_file)
    # generator image
    test_datagen = ImageDataGenerator(rescale=1. / 255)

    test_generator = test_datagen.flow_from_directory(
        dst_path,
        target_size=(128, 128),
        batch_size=batch_size,
        shuffle=False
        )

    labels = test_generator.class_indices #查看类别的label
    #然后直接用predice_geneorator 可以进行预测
    test_generator.reset()
    pred = model.predict_generator(test_generator, verbose=1)
    # 输出每个图像的预测类别
    pre
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值