话不多说,直接上代码:
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import load_model
if __name__=='__main':
#test image directory
dst_path = 'E:/datasets/Rcam-plusMelangerTaile/8KLSBackWindow/test'
#model path
model_file = "D:/CF_new/piglin_alchemy/ckpt/tl_weights.40-0.7715.h5"
batch_size = 8
# load model
model = load_model(model_file)
# generator image
test_datagen = ImageDataGenerator(rescale=1. / 255)
test_generator = test_datagen.flow_from_directory(
dst_path,
target_size=(128, 128),
batch_size=batch_size,
shuffle=False
)
labels = test_generator.class_indices #查看类别的label
#然后直接用predice_geneorator 可以进行预测
test_generator.reset()
pred = model.predict_generator(test_generator, verbose=1)
# 输出每个图像的预测类别
pre