probability,odds,logit, softmax, logSoftmax,交叉熵

probability:事件发生的概率, p
odds: 事件发生的概率和不发生的概率之比 p/(1-p)
logit:odds 的对数 log[p/(1-p)] (在DL模型中,全连接层的输出就是logits

softmax

  1. soft版本的max,这是相对于hard版本的max而言的。相比于hard max,softmax能够放大不同的值之间的差异
  2. softmax作用是把一个序列变成一个概率分布。即序列中的每个值在0-1之间,并且所有值求和等于1

Softmax
有序列为 a a a,总共有n个元素。 a i a_i ai为序列中的第i个元素,则对它求完softmax之后的值为:
S i = e a i / ∑ k = 0 n e a k S_i = e^{a_i}/\sum_{k=0}^{n} e^{a_k} Si=eai/k=0neak

logSoftmax(为了softmax数值计算的稳定性,对softmax再求一个log): S i ′ = l o g ( S i ) S_i' = log(S_i) Si=log(Si)

交叉熵(衡量两个分布p,q的相似性):
C ( p , q ) = − ∑ i = 0 n p ( i ) l o g ( q ( i ) ) C(p,q) = - \sum_{i=0}^{n} p(i)log(q(i)) C(p,q)=i=0np(i)log(q(i))
这里的 i i i指的是序列中的一个值,相当于上面提到的 a i a_i ai。的 q ( i ) q(i) q(i)就是对 i i i求softmax, l o g ( q ( i ) ) log(q(i)) log(q(i))就是对 i i i求logSoftmax。

https://zhuanlan.zhihu.com/p/27188729
https://www.zhihu.com/question/294679135

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值