beta分布及共轭Bernoulli分布-先验、后验、预测分布

本文介绍了Beta分布及其在贝叶斯估计中的应用。详细解释了Beta分布的形式及参数,探讨了它与Bernoulli实验的关系,并展示了如何通过共轭先验简化计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

beta分布介绍

如下为beta分布的形式,其分布有两个参数, α β 。其分布形式如下


这里写图片描述

其中,
这里写图片描述
Γx 是Gamma函数。其中beta分布定义域为【0,1】

10p(p|α,β)dp=1

可以看出

10pα1(1p)β1dx=B(α,β)

Bernoulli实验

伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独立地进行的一种随机试验。其特点是该随机试验只有两种可能结果:发生或者不发生。如下,发生的概率为 p ,不发生的概率为p1。一次Bernoulli实验对应的形式为:


这里写图片描述

比如掷硬币,这里定义 c=1 表示正面向上,否则 c=0 表示反面向上。

共轭

在做贝叶斯估计时,有


这里写图片描述

即后验分布 = 似然函数* 先验分布/ P(X)。

这里写图片描述

之所以采用共轭先验的原因是可以使得先验分布和后验分布的形式相同,这样计算起来就较为方便。为了使得先验分布和后验分布的形式相同,我们定义:如果先验分布和似然函数可以使得先验分布和后验分布有相同的形式,那么就称某参数的共轭先验分布。
一般性的定义如下:设 θ 为总体分布中的参数(或参数向量), π(θ) 为先验的概率密度函数,加入由抽取的信息计算得到的后验概率密度函数与 π(θ) 具有相同的函数形式,则称 π(θ) θ 的共轭先验分布。
需要指出,共轭先验分布是对某一分布的参数而言的,如正太分布的均值、正太分布的方差,离开指定参数以及所在的分布去谈共轭先验分布式没有任何意义的。

如下,还以掷硬币为例,我们依据已有的样本来推测正面向上的概率 p 。基于贝叶斯公式可知其后验概率如下:


这里写图片描述

可以看出推测的后验概率公式与先验形式一致。

同时,我们还能计算得到分母p(x),如下面的式子:


这里写图片描述

利用上面两个式子便可以预测下一次正面向上的概率。


这里写图片描述

期望与方差


这里写图片描述

在beta-Bernoulli process中也有应用

这里写图片描述

参考论文:Heinrich G. Parameter estimation for text analysis[J]. University of Leipzig, Tech. Rep, 2008.

An introduction to Bayesian nonparametrics Lecture 2: The Indian buffet process

Beta 分布是一种连续型概率分布,通常用于描述随机变量落在某个区间内的可能性大小。这种分布在贝叶斯统计中特别有用,常被用来作为伯努利、二项式、负二项式和几何分布等离散概率分布的成功概率的共轭先验。 对于 Beta 分布来说,并没有一个直接被称为“递推公式”的标准术语。但是,在处理与 Beta 分布相关的某些问题时确实会涉及到一些形式上的递归关系或者迭代算法。例如: 当讨论到 Beta 函数 B(x, y),其定义如下: $$B(x,y)=\int_0^1t^{x-1}(1-t)^{y-1}\mathrm dt$$ 其中 x > 0 并且 y > 0。这个函数满足以下性质,这可以被视为一种递推关系: $$B(x+1,y)+B(x,y+1)=B(x,y)$$ 另外,Gamma 函数 Γ(z) 是阶乘概念的一个推广,它与 Beta 函数之间存在联系: $$B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$ 而 Gamma 函数本身有一个简单的递推公式: $$Γ(z + 1) = zΓ(z)$$ 因此,如果我们想要从数学角度探讨如何利用这些特性来构建涉及 Beta 分布参数变化的方法,则可以通过上述两个公式之间的相互作用来进行。 此外,在实际应用中,比如在估计 Dirichlet 先验下的多项式似然比时,可能会遇到需要更新 Beta 分布参数的情况;这时也会用到类似于递推的过程去调整 α 和 β 参数值以适应新的数据点加入后的后分布情况。 综上所述,“beta分布的递推公式”可能是指与其关联紧密的一些特殊函数(如Beta函数和Gamma函数)所具有的递推属性以及它们在特定应用场景中的运用方式。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值