11.旋转数组的最小数字
题目描述:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。
输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。
例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
解题思路:二分法,然后查找
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
if (rotateArray.empty()) return 0;
int left = 0, right = rotateArray.size() - 1;
while (left < right) {
//确认子数组是否是类似1,1,2,4,5,..,7的非递减数组
if (rotateArray[left] < rotateArray[right]) return rotateArray[left];
int mid = left + (right - left) / 2;
//如果左半数组为有序数组
if (rotateArray[left] < rotateArray[mid])
left = mid + 1;
//如果右半数组为有序数组
else if (rotateArray[mid] < rotateArray[right])
right = mid;
//否则,rotateArray[left] == rotateArray[mid] == rotateArray[right]
else {
++left;
}
}
return rotateArray[left];
}
};
12.矩阵中的路径
题目描述:请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 例如
矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
method:
class Solution {
public:
bool hasPath(char* matrix, int rows, int cols, char* str)
{
if(str==NULL||rows<=0||cols<=0)
return false;
vector<vector<char>> board(rows, vector<char>(cols));
for(int i = 0; i < rows; ++i){//将matrix装入二维数组board中
for(int j = 0; j < cols; ++j){
board[i][j] = matrix[i*cols + j];
}
}
vector<vector<bool>> visited(rows,vector<bool>(cols, false));
for(int i = 0; i < rows; ++i){
for(int j = 0; j < cols; ++j){
if(dfs(board, str, 0, i, j, visited) == true)
return true;//以矩阵board中的每个字符为起点进行广度优先搜索
//找到一个符合条件的即返回true.
}
}
return false;//遍历完都没找到匹配的路径,返回false
}
private:
bool dfs(vector<vector<char>> board, char* str, int index, int x, int y,
vector<vector<bool>>& visited){
if(index == strlen(str))return true;//搜寻超过路径长度,符合条件,返回true
if((x < 0)||(y < 0)||(x >= board.size()) || (y >= board[0].size()))
return false;//访问越界,终止,返回false
if(visited[x][y]) return false;//之前访问过,剪枝
if(board[x][y] != str[index]) return false;//不相等,剪枝
visited[x][y] = true;
bool ret = dfs(board, str, index+1, x, y-1,visited)|| //上
dfs(board, str, index+1, x, y+1,visited)|| //下
dfs(board, str, index+1, x-1, y,visited)|| //左
dfs(board, str, index+1, x+1, y,visited); //右
visited[x][y] = false;//记得此处改回false,以方便下一次遍历搜索。
return ret;
}
};