剑指offer - 42.连续子数组的最大和 | 43.1~n整数中1出现的次数

面试题42. 连续子数组的最大和

题目描述: 输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。

示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
 
提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100

解题思路:采用 DP

class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> a) {
      if(!a.size()) return 0;
        int mx = 0x80000000;
        for(int i = 0, s = 0; i < int(a.size()); ++i){
            s = max(s + a[i], a[i]);
            mx = max(mx, s);
        }
        return mx;
    }
};

面试题43. 1~n整数中1出现的次数

题目描述: 输入一个整数 n ,求1~n这n个整数的十进制表示中1出现的次数。
例如,输入12,1~12这些整数中包含1 的数字有1、10、11和12,1一共出现了5次。

示例 1:
输入:n = 12
输出:5

示例 2:
输入:n = 13
输出:6
 
限制:
1 <= n < 2^31

解题思路:

将原数字按10的倍数进行分割,求个、十、百....位上1的个数。以a=31415 and b=92为例,
讨论百位上1的个数,由于5是大于1的,所以当百位上出现1时,个位、十位的范围是099,
所以此时乘以100,而5的前面可以是0-3141,总共(3141+1=3142个。然而当所求位上为01时,其后面的位上不一定能达到0-99,这时候就考虑减1操作。 
class Solution {
public:
    int NumberOf1Between1AndN_Solution(int n){ 
        int ones = 0;
        for (long long m = 1; m <= n; m *= 10)
            ones += (n/m + 8) / 10 * m + (n/m % 10 == 1) * (n%m + 1);
         return ones;
     
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值