工业 4.0 在多年热议后悄然落地,如今,制造、能源和运输企业正在越来越多地从中受益。
仿真未来场景
公司可以使用数字孪生仿真未来场景,以了解天气、车队规模或工况差异等因素对性能的影响。该方法可为维护计划提供决策支撑,并可提前标记预期故障,从而有助于管理资产和优化运营。
公司可以将数字孪生应用于各个领域,包括异常检测、运营优化和预测性维护。
异常检测
数字孪生模型与真实资产并行运行,并会实时标记偏离预期行为的运行行为。例如,石油公司可以流式传输持续运转的海上石油钻塔的传感器数据,而数字孪生模型会寻找运行行为中的异常现象,以标记潜在的设备损坏。
运营优化
公司可以应用天气、车队规模、能源成本或性能因素等变量,触发成百上千个仿真,以评估是否就绪或是否有必要调整当前系统设置点。通过这种方法,您可以优化系统运行,从而缓解风险、降低成本或提高系统效率。下图这家饮料和食品行业设备生产商如何创建数字孪生,从而实现设计优化、故障检测和预测性维护。
预测性维护
在工业自动化和机械应用中,公司可以使用数字孪生模型来确定剩余使用寿命及最合适的设备检修或更换时间。
如图所示,在一个典型的智能连接系统拓扑结构中,可以根据应用所需的响应时间,在智能资产、边缘或 IT/OT 层执行数字孪生。以预测性维护为