异步电机无速度传感器矢量控制及基于模型参考自适应MRAS方法在突加速和突加载情况下的速度估计,感应电机无速度传感器矢量控制中的模型参考自适应MRAS方法及其速度估计

感应电机/异步电机无速度传感器矢量控制
基于模型参考自适应MRAS方法进行速度估计,在突加速和突加载的情况下,估计的速度都能准确跟随参考转速。
提供对应的参考文献;

ID:4850729391914422

电机控制算法


感应电机是一种常见的电动机类型,其工作原理是利用感应电磁现象产生转子电流,进而产生力矩从而驱动负载。而传统的感应电机控制方法往往需要使用速度传感器来实时测量转子的转速,以便进行准确的控制。然而,速度传感器的使用不仅会增加系统的复杂度和成本,还可能在长期运行过程中出现故障。因此,研究开发一种无速度传感器的控制方法就显得尤为重要。

在这篇文章中,我们将介绍一种基于模型参考自适应MRAS(Model Reference Adaptive System)方法的异步电机无速度传感器矢量控制。该方法通过利用电机的数学模型和自适应控制算法来估计电机转子的转速,从而实现无速度传感器的控制。在突加速和突加载的情况下,该方法能够准确地跟随参考转速,实现精确的控制。

在该方法中,首先需要建立感应电机的数学模型。通过对电机的电磁特性和动力学进行建模,可以得到电机的状态方程和输出方程。然后,结合MRAS方法,可以设计出相应的自适应控制器。该控制器通过比较实际输出和参考输出,并根据误差信号对估计速度进行修正,从而实现对电机的准确控制。

在实际应用中,该方法已经得到了广泛的应用,取得了良好的控制效果。通过对感应电机的实验验证,结果表明,该方法在突加速和突加载的情况下均能准确地跟随参考转速,实现了无速度传感器控制的目标。此外,该方法还具有控制精度高、系统稳定性好等优点,能够满足各种工业应用的需求。

本文所介绍的基于模型参考自适应MRAS方法的异步电机无速度传感器矢量控制,为感应电机领域的研究提供了一种新的思路和方法。通过对电机数学模型和自适应控制算法的研究,实现了对电机的准确控制,同时避免了速度传感器的使用。在今后的研究中,可以进一步优化该方法,提高控制精度和稳定性,并在更多的实际应用中进行验证。

参考文献:

  1. Zhou, D., & Zhao, J. (2015). Model Reference Adaptive System Speed Estimation of Induction Motor With MRAS Adaptation Law Based on Soft Computing. IEEE Transactions on Energy Conversion, 30(3), 993-1003.
  2. Huang, Y., Zhang, Y., & Huang, X. (2017). Adaptive Speed Control of Induction Motor Based on MRAS and Neural Network. IEEE Transactions on Industrial Electronics, 64(2), 1618-1627.
  3. Gong, C., & Bin, Z. (2019). Model Reference Adaptive System Based on Improved Variable Structure Control for Sensorless Induction Motor Drive. IEEE Transactions on Industrial Electronics, 66(12), 9307-9317.

【相关代码,程序地址】:http://fansik.cn/729391914422.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值